Localization-delocalization transition in physical networks

Jun Yamamoto^{*,a}, Ivan Bonamassa^a, Márton Pósfai^a

^aDepartment of Network and Data Science, Central European University, Quellenstraße 51, 1100 Vienna, Austria

ABSTRACT .

Physical networks embedded in three-dimensional space under physical constraints are omnipresent in physical and biological systems ranging from self-assembling systems to biological neural networks, to mention a few. Recent studies have revealed that the physicality of networks results in emergent structural features, such as topological entanglement, bundling, and correlations between network topology and physical layout. In particular, correlations $v_i \sim k_i^{\alpha}$ between node degree k_i and node volume v_i are widely observed in empirical physical networks, and linear correlations ($\alpha = 1$) are shown to emerge in simple random walk models of physical networks.

In this work, we study the impact of degree-volume correlations on the Laplacian dynamics on physical networks. To this end, we systematically investigate the so-called physical Laplacian $\mathbf{Q}_{\mathrm{P}} = \mathbf{V}^{-1/2} \mathbf{Q}_{\mathrm{G}} \mathbf{V}^{-1/2}$ with graph Laplacian \mathbf{Q}_{G} and volume matrix $\mathbf{V} = \mathrm{diag}(\{v_i\}_i)$, i.e., a volume-weighted graph Laplacian that captures diffusion-like dynamics on nodes with volumes. Our focus lies on the roles of correlation strength α and network topology on the dynamics, and we examine the spectral properties of physical Laplacians in synthetic and empirical networks. Our results demonstrate that the emergent volume-degree correlations in physical networks can suppress or mitigate the effect of high-degree nodes, preventing extreme localizations of eigenvectors in heterogeneous networks. While our motivation originates from physical networks, our results can also apply to network-of-networks and multilayer networks with heterogeneous layer sizes.

FIGURE 1. (a) The (n + 1)-th component of leading and Fiedler eigenvectors of the *c*-regular random graph of *n* vertices with a randomly attached outlier node of degree d $(n = 10^5, c = 10, d = 316)$. (b–c) The inverse participation ratios (IPRs) of the leading and Fiedler eigenvectors in physical networks with (b) Erdősi-Rényi random graph $(n = 10^4, \langle k \rangle = 10)$ and (c) configuration model with power-law degree distribution $p_k \sim k^{-\gamma}$ $(n = 10^4, \gamma = 3)$ as combinatorial networks and volumes assigned via $v_i \sim k_i^{\alpha}$. (d) The IPRs of the leading eigenvector of empirical networks with different denoising factor p, where the volume of each node i is denoised as $\tilde{v}_i = v_i \exp[p \log \{v_{\text{fit}}(k_i)/v_i\}]$.

*Presenting author.