PSJ Spring Meeting 2022 (Online)

Bifractal Property of Stochastic Fractal Scale-Free Network Model

<u>Jun Yamamoto</u> & Kousuke Yakubo *Dept. Appl. Phys., Hokkaido Univ.* 2022.03.15

Complex Networks

Many real-world networks are large and hetergeneous.

- $N > 10^6$
- $P(k) \propto k^{-\gamma}$ for $k \gg 1$ (Scale-free property)

No-correlation

Generating

[2] C. Song, S. Havlin, and H. A. Makse, Nat. Phys. 2, 275 (2006).

SHM model^[2]

Multifractality of Networks

[3] H. D. Rozenfeld, S. Havlin, and D. ben-Avraham, New J. Phys. 9, 175 (2007).

Multifractality of Networks

Furuya and Yakubo, PRE 84, 036118 (2011).

1. Consider the box-covering 3. Define the box measure of a network

Measure μ_i Box b(l)

2. Assign the node density measure to each node

$$\mu_i = \frac{1}{\sum_{b(l)} \sum_{i \in b(l)}}$$

$$\mu_{b(l)} = \sum_{i \in b(l)} \mu_i$$

4. Compute q-th moment

$$Z_q(l) = \sum_{b(l)} \mu_{b(l)}^q$$

The network structure is multifractal

if $\begin{cases} Z_q(l) \propto l^{\tau(q)} \\ \tau(q) \text{ is nonlinear w.r.t. } q \end{cases}$

Bifractality of Some FSFNs

Furuya and Yakubo, PRE 84, 036118 (2011).

Unsolved Question

How general is the bifractal nature of FSFNs?

Goal

Investigate how general among FSFNs the bifractality is.

Bifractality of Deterministic FSFNs

Stochastic Model of HFSFNs

A General Stochastic Model of Hierarchical FSFNs

- **1.** Prepare $\{G_i\}_{i=1}^n$ and $\{p_i\}_{i=1}^n$ where $\sum p_i = 1$.
- 2. Replace every edge of \mathcal{G}_{t-1} by $G_j \in \{G_i\}_{i=1}^n$ with prob. p_j to form \mathcal{G}_t .

Bifractality of Stochstic HFSFNs

Non-Hierarchical Model of FSFNs

Bifractality of FSFRGs

FSFRG with $\gamma' = 2.75, D_{\rm f} = \frac{7}{3}$ 10× $5000 \le N < 10000$ + $10000 \le N < 15000$ • 15000 < N < 20000 $\mathbf{5}$ 0.000 $q = q_0$ 0 -0.002-5 $\frac{d^2\tau(q)}{dq^2}$ $\tau(q)$ -10-0.004-15theory -0.006 $5000 \le N < 10000$ -20 $10000 \le N < 15000$ -25-0.008 $15000 \le N < 20000$ -20 24 6 -10-50 510qq

Summary and Discussion

Multifractal property of stochastic hierarchical and non-hierarchical FSFN models is studied.

- Generalized Deterministic Model of HFSFNs : bifractal
 - Generalized Stochastic Model of HFSFNs : bifractal
 - Non-hierarchical Fractal Scale-free Networks : bifractal

Appendix

Correspondence with Structures

1 / Appendix

Phase Space of Stochastic Model

To see the stochastic model covers an extensive class of FSFNs, we visualize the phase space of the stochastic model.

Stochastic Model of HFSFNs

Denote $\begin{cases} \kappa_i : \text{degree of root nodes} \\ \lambda_i : \text{distance between root nodes} \\ m_i^{\text{gen}} : \text{number of edges} \end{cases}$

The degrees, the diameter, and the number of edges of \mathcal{G}_t increase by the factors

$$\overline{\kappa} = \sum_{i} p_i \kappa^{(i)}, \ \overline{\lambda} = \sum_{i} p_i \lambda^{(i)}, \ \overline{m_{\text{gen}}} = \sum_{i} p_i m_{\text{gen}}^{(i)}$$
from those of \mathcal{G}_{t-1} , i.e.,

 $k(t) = \overline{\kappa}k(t-1), \ L(t) \sim \overline{\lambda}L(t-1), \ M(t) = \overline{m_{\text{gen}}}M(t-1).$

Thus,

Scale-free Exponent
$$\gamma = 1 + \frac{\log \overline{m_{gen}}}{\log \overline{\kappa}}$$
Fractal Dimension $D_{f} = \frac{\log \overline{m_{gen}}}{\log \overline{\lambda}}$