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Chapter 1

Introduction

Many real-world systems, consisting of elements and interactions between them,
can be represented as networks. In a network-representation, elements and
interactions are expressed as nodes and edges of a network. For example,
websites and hyperlinks in the World Wide Web, papers and their citations in
scientific publications, and species and prey-predator relations in food webs are
depicted as nodes and edges of networks. By ignoring the details of elements
and interactions and extracting how elements are connected to one another, it
becomes possible to compare diverse systems from mathematical and statistical
viewpoints.

Over the last two decades, we have been able to gain much insight into
networks by a vast amount of studies[1–7]. The accumulated study led to iden-
tifications of important quantities such as degrees, shortest path lengths, and
clustering coefficients, which dictate the overall structures of networks. For
instance, it has been reported that many real-world networks share the scale-
free property[8], characterizing the heterogeneous distribution of degrees and
the presence of the hubs, high-degree nodes. As another common property of
real-world networks, the small-world property, a property which implies the
exponential relation between the number of nodes and the average shortest
path length of networks, has been identified[9]. In addition to these struc-
tural properties, we have also made progress in understanding the dynamics
on networks, such as diffusion[10–12], spreads of infectious diseases[13–16],
synchronization[17–22], and game theory[23–26].

In 2005, Song et al. proposed that some networks display the fractal property
defined by a power-law relation between the number of nodes and the average
shortest path length[27]. In their study, networks were renormalized by boxes
(subgraphs) of a given linear size and the renormalized networks exhibited
similar structures to the original one. The fractal property is mathematically
contrary to the small-world nature shared by many networks, but a number
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of small-world networks are fractal at least in shorter length scale. In fact, the
fractal property has been shown in the World Wide Web, actor collaboration,
cellular, and protein-protein interaction networks[27]. Extensive studies related
to fractality of networks have provided insight into the growth process[28],
the robustness against intentional and random failures[28, 29], and the spread-
ing[30] of the fractal networks. In recent years, the fractal analysis of complex
networks has been drawing more and more attention[31–34] due to its applica-
bility, such as the data mining tasks[35], the vulnerability measures[36], and the
recommender system[37].

The heterogeneity of networks due to the scale-free property motivated the
study of the multifractality of fractal scale-free networks[38, 39]. Originally in-
troduced by Mandelbrot to explain the inhomogeneous distribution of the en-
ergy dissipation in turbulent flows[40], the concept of multifractality and the
multifractal analysis have been studied extensively to understand quantities
distributed in a heterogeneous manner, such as the critical wavefunctions at
the Anderson transition[41, 42] and the growth probability distributions in the
diffusion-limited-aggregation[43, 44]. In 2011, Furuya and Yakubo showed local
node densities of certain fractal scale-free networks (FSFNs) and the World Wide
Web exhibit multifractality[38]. In particular, they have shown that FSFNs satis-
fying a certain condition are bifractal, a special case of multifractality. Since then,
many have followed suit to study the multifractality of various networks[45–53].
However, no studies so far have looked into the bifractality of a more compre-
hensive class of FSFNs. In addition, the relation between the bifractality and the
local structures of networks as well as its implications remain unanswered.

In this work, we investigate whether broader classes of FSFNs possess the
bifractality. We utilize three models, namely a general deterministic model
of hierarchical FSFNs, a general stochastic model of hierarchical FSFNs, and
fractal scale-free random graphs. When combined, the three models cover
a quite extensive class of FSFNs. By conducting the multifractal analysis of
all three models, we propose a conjecture that any FSFN exhibits bifractality,
characterized by two fractalities. Moreover, we further investigate local fractal
dimensions of bifractal networks to identify the relation between bifractality
and local structures. The obtained results indicate that the two fractalities of a
bifractal network correspond to the local fractality near the hubs and that near
the non-hubs.

The organization of this work is as follows. In Sec. 2, we introduce funda-
mental quantities of complex networks. We then present in Sec. 3, the three
important properties commonly observed in real-world networks. Sec. 4 is de-
voted to discussing models of FSFNs, which we will use in our work. In Sec. 5,
we focus on the definition and properties of multifractality as well as the prior



6

research, which serves as the basis of this work. Sec. 6 presents our main results
on the bifractality of FSFNs. Finally, we conclude our work in Sec. 7.



Chapter 2

Fundamentals of Complex Networks

In this chapter, we briefly introduce the fundamental concepts of complex net-
works. We present the basic formalism of network-representation and some
of the most significant measures and metrics to quantify the structures of net-
works, such as degrees, distances, and clustering coefficients which have been
formalized by a vast amount of previous studies[1, 2, 4–6, 54, 55].

2.1 Definitions and Representations of Networks
A network (or a graph) G = (V, E) is defined by a pair of two sets V and E,
where V is a non-empty set of nodes (or vertices) and E is a set of ordered pairs
of elements (i, j) for i, j ∈ V . We call elements of E as edges*1. The numbers
of nodes and edges in a given network G = (V, E) are denoted by N = |V | and
M = |E|, where the notation |A| represents the cardinality of a set A.

2.1.1 Types of Networks
If the edge from node i to node j is equivalent to the edge from node j to node
i, the edge is undirected. The edge is directed otherwise. Networks whose
edges are undirected are called undirected networks. In contrast, networks with
directed edges are referred to as directed networks. See Fig. 2.1(a) and (b). For
example, coauthorships in a scientific collaboration network are usually undi-
rected, while citations in a scientific citation network are directed. Depending
on systems and purposes, we may represent a given system as an undirected or
directed network. Note that directed networks can, in principle, be represented
as undirected networks by removing contextual information of the systems.

*1In a network-science context, edges are often called links, but we use the term edge through-
out this thesis.
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2.1. DEFINITIONS AND REPRESENTATIONS OF NETWORKS 8

(a) (b) (c)

self-loop

multiedge

Figure 2.1: Examples of (a) a simple undirected network, (b) a simple directed
network, and (c) a non-simple undirected network.

Another classification of networks is possible based on the presence of weight,
a numerical attribute associated with an edge. Typically, weights on edges rep-
resent the intensity or measures of the interactions. For instance, the edges in a
scientific collaboration network can be weighted with the number of collabora-
tions between a pair of authors. The edges in a road network can be weighted
by the amount of traffic.

When systems consist of two distinct types of elements and interactions exist
exclusively between a pair of nodes of different types, the systems may be
represented by bipartite networks. A typical example of such a system is a
relation between an actor and a movie. In the corresponding bipartite network,
an edge between an actor and a movie is present if the actor acts in that movie.

Throughout this thesis, we only consider undirected unweighted networks
for simplicity. Furthermore, we assume that networks are simple, that is, there
exist no self-loops (an edge from node i to itself) and no multiedges (more than
one edges between the same node pair). Networks with multiedges are called
multigraphs. An example of multigragh is shown in Fig. 2.1(c).

2.1.2 Representations of Networks
Any undirected unweighted network G = (V, E) with N = |V | nodes can be
represented by an adjacency matrix Aij of the size N × N , where

Aij =

1 if (i, j) ∈ E

0 otherwise.
(2.1)

The adjacency matrix of an undirected network is always symmetric. Hence, the
number of edges M of a given network can be written in terms of its adjacency
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matrix as follows;

M =
∑
i<j

Aij = 1
2

N∑
i=1

N∑
j=1

Aij. (2.2)

The representation by an adjacency matrix contains complete structural infor-
mation of the network, and thus is advantageous in analytical calculation of
various quantities and properties. On the contrary, an adjacency matrix is in-
efficient as its elements include a large number of zeros, especially when the
network is sparse.

Another way to represent an undirected, unweighted network is the repre-
sentation by an edge list e, in the form

e =


(i1, j1)
(i2, j2)

...
(iM , jM)

 (2.3)

where ek = (ik, jk) ∈ E. Notice that we can rewrite the edge list in one-
dimensional vector of length 2M instead of two-dimensional matrix of size
(M, 2). The representation by an edge list is optimal when the network is sparse,
i.e. M � N2, because edge lists require much less memory space than adjacency
matrices.

When representing a network in computers, we may also use the adjacency
list F of length N

F = {F1, F2, · · · , FN} (2.4)

where

Fi = {j ∈ V |(i, j) ∈ E} . (2.5)

This representation is optimal when we are interested in walks*2 of a given
network.

2.2 Degrees, Degree Distributions, and Degree Cor-
relations

One of the most important measures of networks is the degree to which a given
node is connected to other nodes. This section introduces the definition and
properties of such a measure.

*2Refer to Definition A.1.3 in the appendix A.1.
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(a) (b) (c)

Figure 2.2: (a) The degree kc of the central node is kc = 7 while all the other nodes
have the degree ki = 1 (i = 2, 3, . . . 8). Such a network is called a star graph. (b)
and (c) are a 4-regular and complete network with 6 nodes, respectively.

2.2.1 Degrees
The degree ki of node i is the number of edges from node i. For example, the
degree of the center node in Fig. 2.2(a) is seven while those of the other nodes
are one. Using the adjacency matrix, the degree of node i can be expressed as

ki =
N∑

j=1
Aij. (2.6)

By definition of simple networks, the maximal degree of a network with N nodes
is at most N − 1. The sum of degrees ki over all the nodes add up to twice the
number of edges, i.e.

N∑
i=1

ki =
N∑

i=1

N∑
j=1

Aij = 2M. (2.7)

This is trivial because every edge in an undirected network has two ends. From
the above result, the mean degree of a network G is given by

〈k〉 = 1
N

N∑
i=1

ki = 2M

N
. (2.8)

Occasionally, all the nodes in a network have the same degree k. Such a network
is called a k-regular graph. Specifically, (N − 1)-regular networks are complete
networks, in which all nodes are adjacent to each other. See Fig. 2.2(b) and (c).

2.2.2 Degree Distributions
The degree distribution P (k) of a network G = (V, E) is the probability that a
randomly selected node i ∈ V has degree k, or the proportion of the nodes with
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degree k. By denoting the number of nodes with degree k by N(k), the degree
distribution is obtained as

P (k) = N(k)
N

= 1
N

N∑
i=1

δkki
, (2.9)

where δij is Kronecker delta, i.e. δij = 1 if i = j and δij = 0 otherwise. Since
the degree distribution is a probability, the sum of the degree distribution over
k adds up to 1 by the normalization condition

N−1∑
k=0

P (k) = 1. (2.10)

The average degree of a network can alternatively expressed in terms of degree
distribution,

〈k〉 =
N−1∑
k=0

kP (k). (2.11)

By substituting Eq. (2.9) into Eq. (2.11), we have

〈k〉 =
N−1∑
k=0

k

(
1
N

N∑
i=1

δk,ki

)

= 1
N

N∑
i=1

(
N−1∑
k=0

kδk,ki

)

= 1
N

N∑
i=1

ki. (2.12)

Thus we can confirm Eqs. (2.8) and (2.11) are equivalent.
In addition to the average degree, the variance of degree σ2

k is defined as

σ2
k =

N−1∑
k=0

(k − 〈k〉)2P (k). (2.13)

By definition of variances, σ2
k can be expressed in terms of the average degree

〈k〉 and the second-moment of the degree 〈k2〉 as follows:

σ2
k = 〈k2〉 − 〈k〉2, (2.14)

where

〈k2〉 =
N−1∑
k=0

k2P (k). (2.15)
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2.2.3 Degree Correlations
In addition to the degree of a given node, the degrees of its neighbors play a
significant role in networks. There often exist biases in connectivity of nodes
based on their degrees. Such a bias of node connectivity is called degree corre-
lation. When high degree nodes in a network tend to connect with each other,
we call that network assortative. In contrast, a network is disassortative when
high degree nodes are more likely to connect with low degree nodes. If such a
bias is absent in a network, the network is said to be uncorrelated.

To determine the presence of degree correlations, we consider the conditional
probability P (k′|k) that an adjacent node to a k-degree node is a k′-degree node.
Note that P (k′|k) must be normalized for any k, i.e.

N−1∑
k′=0

P (k′|k) = 1. (2.16)

The conditional probability P (k′|k) must also satisfy the so-called detailed bal-
ance condition,

kP (k′|k)P (k) = k′P (k|k′)P (k′), (2.17)

which expresses that the number of k-degree nodes which are adjacent to k′-
degree nodes must be equal to the number of k′-degree nodes which are adjacent
to k-degree nodes.

When a network is uncorrelated, the conditional probability P (k′|k) is inde-
pendent of k. Hence, by taking the sum of the left-hand side of Eq. (2.17) with
respect to k, we get∑

k

P (k′|k)P (k) = P (k′|k)
∑

k

kP (k) = 〈k〉P (k′|k). (2.18)

As the sum of the right-hand side of Eq. (2.17) with respect to k simplifies to
k′P (k′) because of the normalization condition (2.16), the sum of both sides of
Eq. (2.17) over k ends up in the form

P (k′|k) = k′P (k′)
〈k〉

. (2.19)

In contrast, if P (k′|k) depends on k, the network is correlated or more specif-
ically nearest-neighbor correlated. A simple way to observe nearest-neighbor
degree correlations is to draw a scatter plot of the degrees k and k′ of the ter-
minal nodes of all the edges in a network. If there is a positive correlation
between k and k′, the network is assortative. If there is a negative correlation, it
is disassortative.
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Average nearest-neighbor degrees knn(k), the mean degrees of the neighbor-
ing nodes of a k-degree node, is defined as

knn(k) =
∑
k′

k′P (k′|k). (2.20)

In the case of uncorrelated networks, we attain

knn(k) =
∑
k′

k′ · k′P (k′)
〈k〉

= 〈k2〉
〈k〉

. (2.21)

which is also independent of k. In contrast, the average nearest-neighbor degree
knn(k) depends on k for assortative and disassortative networks. knn(k) is an
increasing function of k in assortative networks, while it is a decreasing function
of k in disassortative networks.

2.3 Network Distances, Average Shortest Path Dis-
tances, and Diameters

In general, Euclidean distances between pairs of nodes are not defined in net-
works*3 Nonetheless, we often want to consider how "close" or how "far" a given
pair of nodes is. This section introduces distances and diameters in networks.

2.3.1 Distances
To consider the distance between a pair of nodes (i, j), we first identify the paths
connecting the pair. A path P between (i, j) in a network G = (V, E) is an
alternating sequence of nodes and edges such that no nodes are visited more
than once.

P(i, j) = (i, eii′ , i′, ei′i′′ , · · · , j′, ej′j, j) (2.22)

where i, i′, j′, j ∈ V and eij = (i, j) ∈ E. The length of a path P(i, j) is the
number of edges in the sequence. Node i is reachable from node j if there exists
at least one path between (i, j).

There can exist multiple paths connecting two nodes i and j. Hence, the
distance lij between the pair (i, j) is defined by the length of the shortest path
between (i, j). We define the distance from node i to itself as lii = 0 for ∀i ∈ V .
In case node i is not reachable from j, we set lij = ∞. As mentioned earlier, we

*3Obviously, with exception of geographic networks in which every node is embedded in a
Euclidean space.
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will only consider unweighted undirected graphs in this work. Therefore, the
distance defined above always satisfies the conditions of a metric, namely lij ≥ 0
for i, j ∈ V (non-negativity), lij = 0 ⇔ i = j (identity of indiscernibles), lij = lji

(symmetry), and lij ≤ lik + lkj (triangle inequality). Refer [56] for proof.

2.3.2 Average Shortest Path Distances and Diameters
The network distance defined above is a local measure. Instead, as we will see
later, we want to extract global measures of a given connected network*4. Two
important global measures are the average shortest path distance and diameter.

The average shortest path distance of a network is defined as

〈l〉 = 1
N(N − 1)

N∑
i=1

∑
j 6=i

lij. (2.23)

The diameter L of a network is the maximal distance between any pair of
nodes within a network. Therefore, the diameter is given by

L = max
i 6=j

lij. (2.24)

2.4 Clustering Coefficients

2.4.1 Local Clustering Coefficients
Local clustering coefficients quantify the degree to which neighbors of a node are
connected to each other. A local clustering coefficient in a friendship network,
for instance, is the quantity which represents how many friends of a person are
friends to each other. Local clustering coefficient is a significant characteristic
quantity in networks because it evaluates the proportion of closed paths of
length 2. Mathematically, the local clustering coefficient for a given node i is
defined by

Ci =


2mi

ki(ki − 1) if ki > 1

0 if ki = 0, 1
(2.25)

where mi is the number of edges between the neighbors of node i. Note that
ki(ki − 1)

2 is the maximal number of triangles which contain node i as one of the

*4We can consider global measures only for connected networks, because lij diverges when
nodes i and j are disconnected.
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three vertices. Local clustering coefficients thus take the values between 0 and 1,
i.e., 0 ≤ Ci ≤ 1. Ci of a tree graph is zero for any node i and Ci = 1 (∀i ∈ V ) for
complete graphs. The numerator mi can be rewritten in terms of the adjacency
matrix,

mi =
∑
j<k

aijajkaki. (2.26)

Using the relations (2.26) and (2.6) , Eq. (2.25) is expressed as

Ci =

∑
j,k

aijajkaki∑
j,k

aijaki −
∑

j

aij

. (2.27)

2.4.2 Global Clustering Coefficients
Local clustering coefficients introduced in the previous section can be averaged
over an entire network to characterize the network globally. The average clus-
tering coefficient, or the global clustering coefficient, is then defined by

C = 1
N

∑
i∈V

Ci. (2.28)

Trivially, the average clustering coefficients satisfy 0 ≤ C ≤ 1 since 0 ≤ Ci ≤ 1
for ∀i ∈ V .

Alternatively, transitivity T may be used as global clustering coefficient of a
given network. Transitivity of the network is defined as follows:

T = 34
(# of distinct paths of length 2) . (2.29)

where 4 is the number of triangles in a given network. Here, the number of
distinct paths of length 2 means the number of sets of three nodes (u, v, w) such
that there exist edges in node pairs (u, v) and (v, w).



Chapter 3

Properties of Real-world Networks

Network science, as mentioned in Ch. 1, has been established on many empirical
studies on various real-world networks. In this chapter, we introduce the three
significant properties, which are commonly observed in real-world networks,
and their implications[1, 2, 4–6, 54, 55]. These properties, namely the scale-
free, small-world, and fractal properties, play a central role in determining the
statistical properties of and dynamics on networks.

3.1 Scale-free Property
Various real-world networks possess degree distributions with power-law tails
for k � 1, i.e.

P (k) ∝ k−γ. (3.1)

The property that p(k) behaves according to Eq. (3.1) is called the scale-free
property, and a network with a power-law tail degree distribution is said to be
a scale-free network.

In 1999, Barabási and Albert reported the scale-free property of the World-
Wide-Web, actor collaboration network, and power-grid network[8]. See Fig. 3.1.
Since then many real-world networks are shown to be scale-free. It has been
found that the scale-free exponents γ of most real-world networks are generally
in the range 2 < γ ≤ 3.

The term "scale-free" originates in the fact that there exists no characteristic
scale in a power-law function. Due to the fat-tail of degree distributions, the
degrees of nodes in scale-free networks are heterogeneous. While the majority
of nodes have low degrees, a minority of nodes have extremely high degrees.
Such a high-degree node is called a hub.

16
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(a) (b) (c)

Figure 3.1: Degree Distributions of (a) actor collaboration network with N =
212, 250, (b) the World-Wide-Web with N = 325, 729, and (c) power-grid network
with N = 4, 941. The dashed lines show the slopes of (a) γ = 2.3, (b) γ = 2.1,
and (c) γ = 4. The figure is taken from [8] and slightly modified for presentation
purposes.

To better understand the scale-free property, let us consider a network whose
degree distribution is asymptotically given by

P (k) = Ck−γ for k � 1, (3.2)

where C is the normalization constant and γ > 1. The condition on γ ensures
that the degree distribution is normalized∑

k

P (k) = 1. (3.3)

The mean degree 〈k〉 and second moment 〈k2〉 are expressed as

〈k〉 =
∑

k

kP (k) =
∑

k

Ck1−γ (3.4)

and

〈k2〉 =
∑

k

k2P (k) =
∑

k

Ck2−γ. (3.5)

From Eq. (3.4) and (3.5), we observe three different regimes based on the value
of γ.
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1. For 1 < γ ≤ 2, both 〈k〉 and 〈k2〉 diverge in the limit of N → ∞.

2. For 2 < γ ≤ 3, 〈k〉 is finite and 〈k2〉 diverges in the limit of N → ∞.

3. For γ > 3, both 〈k〉 and 〈k2〉 are finite in the limit of N → ∞.

Since most real-world networks take the scale-free exponent in the range 2 <
γ ≤ 3, they have finite mean degree but infinite second moment. That is, though
real-world networks have finite mean degrees which do not depend on samples
or network sizes, the values of mean degrees are not characteristic, which is, as
stated above, exactly what "scale-free" means. The heterogeneity of degrees can
be also confirmed by diverging standard deviation σ(k) =

√
〈k2〉 − 〈k〉2 → ∞ for

N → ∞. This property is a consequence of the hubs whose degrees are order of
magnitude much larger than the mean degree. The presence of the hubs plays
a vital role in various properties of and dynamics on scale-free networks.

Speaking of the hubs, the highest degrees kmax of scale-free networks with
γ > 2 are known to scale as

kmax ∼ N
1

γ−1 . (3.6)

Note that in the limit γ → 2, kmax → N . In fact, the heterogeneity of degrees
increases with decreasing scale-free exponents.

Beware that not all the real-world networks display scale-free property. Ge-
ographical networks such as railroad networks and power-grid networks *1 do
not exhibit scale-free property.

3.2 Small-world Property
A network is said to be small-world if it has a large clustering coefficient and
short average shortest path distance relative to the number of nodes. Clustering
coefficients are considered large if the clustering coefficient takes a finite value
which does not depend on the network size, i.e.,

C ∝ N0. (3.7)

In the case of real-world networks with fixed network sizes, clustering coef-
ficients are considered large if the clustering coefficients of the networks are

*1Attentive readers may have noticed that Barabási and Albert claimed that a power-grid
network is scale-free in 1999. The later works, however, showed that the degree distribution of
the power-grid network is actually exponential.
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greater than those of the random graphs*2 with the same numbers of nodes and
edges.

The average shortest path distance of a network is considered short relative
to the number of nodes if it is of the equal (or lower) order than the logarithm
of the number of nodes.

〈l〉 ∝ log N (3.8)

Alternatively, if the diameter of a network satisfies

L ∝ log N (3.9)

in addition to Eq. (3.7), then the network is small-world. Many real-world
networks are known to be small-world[1].

The small-world property of some networks, though in a more vague manner,
has been known as far back as the 1940s, as it was contained in a the preprint
by de Sola Pool and Kochen*3 [57]. Their work inspired the widely known work
by Milgram in 1967[58], which reported that any two individuals in the world
are on average separated by the ‘six degrees of separation,’ i.e. the average
shortest path distance in a social network is six. Though subsequent studies
have suggested the different values of average shortest path distances, they
nonetheless confirmed that social networks are typically small-world.

To understand the emergence of the small-world property, let us first consider
a d-dimensional regular lattice of N nodes. In the lattice, the average shortest
path distance behaves as 〈l〉 ∝ N1/d and takes a much larger value of 〈l〉 than that
of a small-world network when N � 1. Motivated by the presence of shortcut
edges, which connect distant nodes, in many of the real-world networks with
small-world property, let us add shortcut edges in a regular lattice to transform
it to be small-world.*4 By adding N log N shortcut edges at random, the average
shortest path of the originally regular lattice becomes 〈l〉 ∝ log N [6]. At the same
time, the clustering coefficient behaves as C ∼ 1/(log N)2 with introduction of
N log N shortcut edges, which is sufficiently larger than that corresponding
value (C ∼ N−1) in random graphs, which we will explain later in Sec. 4.4.1. In
short, the small-world property arises when a small number of shortcut edges
are added to a regular lattice.

*2A random graph is an ensemble of graphs with a fixed number of nodes N whose edges are
randomly placed between any pair of nodes with a given probability p.

*3Their work was not formally published until 1978.
*4This is not limited to regular lattices but rather applicable to any network whose average

shortest path follows power-law, 〈l〉 ∝ Nβ with β > 0.



3.3. FRACTAL PROPERTY 20

3.3 Fractal Property
Fractal property is, in general, the property of a system in which characteristic
length scale is absent[59]. In complex networks, fractal property is defined in
terms of the average shortest path distance 〈l〉 or the network diameter L instead
of Euclidean distance for objects embedded in Euclidean spaces. Hence, the
fractal property of networks is expressed as

N ∝ 〈l〉Df , N ∝ LDf . (3.10)

The exponent Df is called the fractal dimension of a network.
Notice from Eq. (3.8) that the relation between the average shortest path and

the number of nodes in a small-world network is given by

N ∝ e〈l〉/l̃, (3.11)

and there clearly exists a characteristic length scale l̃. This intuitively suggests
that the small-world property and the fractal property cannot coexist in the
same network. As many real-world networks are small-world, it was initially
believed that the fractal property does not emerge in complex networks. Song
et al. reported in 2005 that some of the extensively studied networks such as
the World-Wide-Web (WWW) and the protein-protein interaction network (PIN)
satisfy the fractality condition in a box-covering sense[27], i.e.

NB ∝ l−Df
B . (3.12)

Here, NB is the number of boxes (subgraphs) required to cover the entire network
and lB is the box size (the diameter of each subgraph). The fractality in a box-
covering sense is based on the covering of a network by the minimal set of boxes
(subgraphs). As the problem of finding the true minimal covering of a given
network is NP-hard[60], we numerically approximate the minimal covering in
practice. So far, various algorithms to compute a box-covering of a network have
been proposed[34, 35, 60–63]. Real-world networks which have been identified
as fractal by the box-covering method include the WWW, PINs and metabolic
networks of H. sapiens and E. coli, as well as the actor collaboration network[27,
64]. In fact, Fig. 3.2 shows that the World Wide Web is fractal in a box-covering
sense, as the log-log plot of the number of boxes and the box size is linear. Most
of these networks are small-world in the length scale of l ∼ 〈l〉 or L but fractal
in the length scale of l � 〈l〉 or L.

In addition to the definitions of the fractal property in the forms of Eq. (3.10)
and (3.12), the fractality of networks can alternatively be defined in a cluster-
growing sense as

〈Mc(lc)〉 ∝ lDf
c , (3.13)
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Figure 3.2: The log-log plot of the normalized number of boxes and the box size
for the World-Wide-Web with N = 325, 729. The figure is taken from [6].

where the 〈Mc(lc)〉 is the mean number of nodes ("mass") within distance lc from
a seed, averaged over a set of randomly selected seed nodes.

It is important to note that the self-similarity and the fractal property are dis-
tinguished in complex networks. While the fractality of a network is expressed
by the relations in Eq. (3.10) - (3.13), the self-similarity is defined as a prop-
erty of a network which remains invariant under the following renormalization
scheme:

(1) Find an optimal box-covering of a network by boxes of size lB.

(2) For the optimal covering, apply a renormalization by replacing each box
by a supernode. In the renormalized network, supernodes i and j are
connected by an superedge if and only if there exists at least one edge that
connect one of the nodes belonging to supernode i and one of the nodes
belonging to supernode j.

(3) Iterate step (1) and (2) until there remains a single supernode.

Fig. 3.3(a) shows an example of the renormalization steps with different box sizes
and Fig. 3.3(b) visualizes the renormalization of the World Wide Web. Though
we distinguish the concepts of fractality and self-similarity, fractal networks
generally exhibit self-similarity. At the same time, as the fractal property and
the self-similarity are distinct properties, the self-similarity is observed in some
small-world networks, such as the Internet[64].
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(a) (b)

Figure 3.3: The renormalization procedure of networks. (a) Examples of the
renormalization scheme in a network of eight nodes by boxes of three different
sizes lB = 2, lB = 3, and lB = 4. (b) Three renormalization steps of the World-
Wide-Web by a fixed box size lB = 3. The figure is taken from [27].

Interestingly, the superdegree k′ of each supernode in the renormalized net-
work scales with the largest degree k in the box as

k′ = s(lB)k. (3.14)

The scaling factor s was also empirically found to scale with lB,

s(lB) ∼ l−Dk
B . (3.15)

The exponent Dk is called the degree exponent. The exponents γ, Df , and Dk

are not independent but are related to each other with the scaling relation

γ = 1 + Df

Dk

. (3.16)



Chapter 4

Models of Fractal Scale-free
Networks

In this chapter, we introduce some of the models of fractal scale-free net-
works (FSFNs), namely (u, v)-flower model[65], Song-Havlin-Makse model[28],
general models of hierarchical FSFNs[66–68], and fractal scale-free random
graphs[3, 69, 70]. These synthetic models enable us to study FSFNs system-
atically. We indeed utilize some of the these models to study the bifractality of
FSFNs.

4.1 (u, v)-flower
(u, v)-flower is one of the most extensively studied models of FSFNs. Originally
proposed by Rosenfeld, et al. in 2007, it is a recursive deterministic fractal scale-
free networks[65]. The two parameters u and v are positive integers. Without the
loss of generality, we assume 1 ≤ u ≤ v. Networks are constructed as follows:

(1) Initiate a network as a cycle graph of w = u + v edges.

(2) Replace every edge of the (t − 1)-th generation network by a cycle graph
of w = u + v edges.

(3) Repeat step (2) until a number of nodes reaches the target value.

Figure 4.1 shows two example networks constructed by the above procedures.
Denoting the number of edges in the t-th generation network by Mt, the

increase in the number of edges from t − 1 to t-th generation is expressed as

Mt = wMt−1. (4.1)

23



4.1. (U, V )-FLOWER 24

-flower

-flower

Figure 4.1: The 1st, 2nd, and 3rd generation (1, 2)-flower and (2, 2)-flower.

The number of edges in the 1st generation network is M1 = w. By solving the
recurrence relation, we obtain

Mt = wt. (4.2)

Similarly, the number Nt of nodes in the t-th generation network increases by
the factor of w from the (t − 1)-th generation network but we must subtract the
number of double-counted nodes, which is w, i.e.

Nt = wNt−1 − w. (4.3)

Under the initial condition N1 = w, Eq. (4.3) can be solved as

Nt =
(

w − 2
w − 1

)
wt + w

w − 1 . (4.4)

In the (u, v)-flower, the possible values of degrees are

kn = 2n, for 1 ≤ n ≤ t, (4.5)

because degrees of the nodes are multiplied by two at every generation. The
number of kn-degree nodes in the t-th generation network must be equal to the
number of kn−1-degree nodes in the (t − 1)-th generation network. The number
of k1 = 2-degree nodes is equivalent to the number of newly added nodes in the
final operation from t − 1 to t-th generation. That is,

Nt(kn) =

wn−1(w − 2) for kn = 2,

Nt−1(kn−1) for kn > 2.
(4.6)
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By solving the recurrence relation (4.6), we obtain

Nt(kn) =

(w − 2)wt−n for kn < 2t,

w for kn = 2t.
(4.7)

In a sufficiently large network with t > n � 1, the degree sequence may be
considered as continuous. Thus, the degree distribution P (k) approximately
satisfies the relation

|P (k)dk| = |Nt(kn)dkn| (4.8)

for k � 1. From Eqs. (4.5) and (4.7), the degree distribution for k � 1 is given
by

P (k) = (w − 2)wt

log 2 k−(log w/ log 2+1). (4.9)

Hence, the (u, v)-flower model exhibits the scale-free property and its scale-free
exponent in terms of u and v is

γ = log(u + v)
log 2 + 1. (4.10)

Next, let us consider the diameter Lt of the t-th generation (u, v)-flower. The
diameter in the case of u = 1 and odd v is given by

Lt = (v − 1)t + 3 − v

2 . (4.11)

In the case of u > 1, the recurrence relation of the diameter is

Lt = uLt−1 + v − u. (4.12)

Specifically, when u + v is even, the diameter of the first generation is L1 =
(u + v)/2 and the diameter is determined as

Lt =
(

u + v

2 + v − u

u − 1

)
ut−1 − v − u

u − 1 . (4.13)

Equation (4.12) cannot be solved analytically when u + v is odd. It is however
known that

Lt ∼ ut (4.14)
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for t � 1. From Eqs. (4.4) and (4.11)-(4.14), the relation between the number of
nodes and the diameter in the (u, v)-flower is as follows:

Lt ∼


v − 1

log(v + 1) log Nt if u = 1,

N
− log(u+v)/ log u
t if u ≥ 2.

(4.15)

The above result indicates that the (u, v)-flower is small-world when u = 1
and fractal when u ≥ 2. The model exhibits qualitatively different properties
depending on the value of u. This difference arises from the presence of short-
cut edges between hubs in the case of u = 1. Nevertheless, the fractal dimension
of (u, v)-flower with even u + v is

Dcg
f = log(u + v)

log u
. (4.16)

The above argument presents the fractal dimension in the cluster-growing
sense. To determine the fractality in the box-covering sense, let us consider the
box-covering scheme of (u, v)-flower. The most simple way to box-cover the t-th
generation (u, v)-flower Gt is probably to cover each Gt′ (1 ≤ t′ ≤ t) in Gt by a box.
We call this covering scheme the scheme I. The scheme I is unfortunately not
the minimal box-covering of (u, v)-flower. Again, the proper fractal analysis in a
box-covering method requires the minimal box-covering of a given network*1. In
the case of (u, v)-flower, the true minimal covering is unknown but the covering
in the descending order of the degree sequence, as shown in Fig. 4.2(b), enables
the box-covering with less boxes than the scheme I. Let us call this covering
scheme the scheme II.

We now consider the box-covering of the t-th generation (u, v)-flower by
the scheme II. Let the box sizes lB be the diameter of t′-th generation network
(1 ≤ t′ ≤ t). Then the number Nb(s)(Lt′) of boxes whose centers are s-th largest
hubs is equal to the number of the s-th largest hubs,

Nb(s)(Lt′) = Ns − Ns−1

= (w − 2)ws−1(1 − δ1s) + wδ1s. (4.17)

where 1 ≤ s ≤ t − t′ and w = u + v. The total number of boxes needed to cover
the t-th generation (u, v)-flower is attained by taking the sum of Nb(s)(Lt′) from

*1The box-covering scheme does not have to be minimal as long as it as close to minimal as to
give the same scaling in fractal analysis.
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(a) (b)

Figure 4.2: Two box-covering schemes of the 3rd generation (2, 2)-flower. (a)
Non-optimal covering scheme with 16 boxes. (b) Optimal covering scheme with
12 boxes. The figure is taken from [6].

s = 1 to s = t − t′, i.e.

NB(Lt′) =
t−t′∑
s=1

Nb(s)(Lt′)

=
(

w − 2
w − 1

)
wt−t′ − w

w − 1 . (4.18)

In a sufficiently large generation t � 1,
NB(Lt′) ∝ wt−t′

. (4.19)
By expressing t′ in terms of Lt′ from Eq. (4.14), we finally obtain

NB(Lt′) ∝ L
− log w/ log u
t′ . (4.20)

The fractal dimension in the box-covering sense is

Dbc
f = log(u + v)

log u
. (4.21)

Notice that the fractal dimension in the box-covering sense and that in the
cluster-growing sense agree with each other.

4.2 Song-Havlin-Makse Model
Song et al. proposed in 2006 a simple mathematical model which incorporates
the formation of fractal networks to identify the origin of fractality[28]. In this
model, networks are formed by the following algorithm:
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(1) Initiate a network with a star graph with a small number of nodes. Denote
the numbers of nodes and edges in the initial network by N1 and M1,
respectively. Since the initial network is a star graph, M1 = N1 − 1.

(2) For every node i in the (t − 1)-th generation network Gt−1, add mki nodes
around it and connect them to node i. Here, ki is the degree of node i and
m is an integer model parameter with m ≥ 2.

(3) For every edge in Gt−1, we perform one of the two modes:

• Mode I: with probability e, do nothing. The quantity e is the second
model parameter with 0 ≤ e ≤ 1.

• Mode II: with probability 1−e, remove the edge. Let the two terminal
nodes of the edge be i and j. Then, connect one of the newly added
nodes around i and one of the newly add nodes around j by a new
edge.

(4) Repeat steps (2) and (3) until a desired number of nodes is obtained.

Figure 4.3 shows an example of networks generated by the SHM model.
Let us now calculate the properties of the SHM model. From the algorithm

described above, the number Nt of nodes in the t-th generation network increases
from that of the (t − 1)-th generation network by

Nt = Nt−1 + 2mMt−1, (4.22)

where Mt−1 is the number of edges in the (t − 1)-th generation network. Since
the resulting networks of SHM model are trees, the number of edges is given by
Mt−1 = Nt−1 − 1. Hence, Eq. (4.22) can be rewritten as

Nt = (2m + 1)Nt−1 − 2m. (4.23)

Figure 4.3: The 1st, 2nd, and 3rd generation Song-Havlin-Makse model for m = 2
and e = 0.
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In a sufficiently large network with t � 1, the second term is negligible. Thus,
we have

Nt = (2m + 1)Nt−1. (4.24)

Before we proceed to the degree distribution of SHM model, let us consider
the diameter of SHM model. Assuming the diameter of the (t−1)-th generation
network is known as Lt−1, the diameter of the t-th generation network is given
by

Lt = [e + 3(1 − e)] Lt−1 + 2. (4.25)

The second term on the right-hand side is the contribution from the two edges
added around the two terminal nodes of the longest shortest path which gives
the diameter. In a sufficiently large network with Lt � 1, the second term is
negligible, and hence the diameter of the t-th generation network grows from
that of the (t − 1)-th generation network by a factor of [e + 3(1 − e)]. That is,
when the number of nodes increases by the factor (2m + 1) as in Eq. (4.24),
the diameter grows by the factor [e + 3(1 − e)]. We therefore have the fractal
dimension in the cluster-growing sense as

Dcg
f = log(2m + 1)

log [e + 3(1 − e)] . (4.26)

Note that in the case of e = 1, the denominator becomes zero and the fractal
dimension diverges. This indicates that the network is small-world, Lt ∝ log Nt

if e = 1. The parameter e = 1 corresponds to the condition at which two hubs
are directly connected, i.e. the resulting networks are assortative. It provides us
with a key insight that the disassortativity, or the repulsion of the hubs, plays an
important role in the formation of fractal networks. For the sake of brevity, we
do not argue the fractality in the box-covering sense here but it has been known
that the fractal dimension of SHM model in the box-covering sense agrees with
that in the cluster-growing sense.

Finally, let us determine the degree distribution of SHM model. The degree
k of each node in the (t − 1)-th generation network grows by the factor of
m in the t-th generation network. The number of mk-degree nodes in the t-
th generation network is hence equal to the number of k-degree nodes in the
(t − 1)-th generation network, i.e. Nt(mk) = Nt−1(k). In terms of the degree
distributions,

NtPt(mk)d(mk) = Nt−1Pt−1(k)dk, (4.27)

where Pt is the degree distribution of the t-th generation network. Since the
SHM model generates fractal networks in the case of e < 1, the formed networks
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are self-similar and thus the degree distribution function retains the same form,
i.e. Pt(k) = Pt−1(k) = P (k). Assuming the degree distribution of the form
P (k) ∝ k−γ , Eq. (4.27) gives

Nt(mk)−γd(mk) = Nt−1k
−γdk

∴ Ntm
−γ+1 = Nt−1. (4.28)

Substituting Eq. (4.24) into Eq. (4.28), we attain

(2t + 1)m−γ+1 = 1. (4.29)

We therefore have the scale-free exponent as

γ = log(2t + 1)
log t

+ 1. (4.30)

4.3 General Models of Hierarchical Fractal Scale-free
Networks

The models we have considered so far are two extreme cases of FSFNs: (u, v)-
flower is cyclic and SHM model is tree. They fail to reproduce real-world
FSFNs, such as the WWW and PINs, which consist of both cycles and trees. It
is also different from real-world networks that the clustering coefficients of the
FSFNs formed by these two models are always zero. In addition, the scale-free
exponents, the fractal dimensions, and other structural features of FSFNs are
restricted in the two models. To address these problems, Yakubo and Fujiki pro-
posed a general model of hierarchical fractal scale-free networks (HFSFNs)[66,
67]. We introduce two versions of their model: deterministic one in Sec. 4.3.1
and stochastic one in Sec. 4.3.2.

4.3.1 Deterministic Model
In the deterministic model of HFSFNs, we need to prepare a small connected
graph called a generator G and an initial graph G0. In a generator G, we must
specify two nodes as root nodes. We repeat the procedure of forming the t-
th generation network Gt by replacing iteratively every edge of Gt−1 with the
generator G in a manner that the root nodes align with the terminal nodes of
the replaced edge. See Fig. 4.4(a). For simplicity, we set G0 to be a graph which
consists of a pair of nodes and an edge connecting the pair.

In order for generated networks to be scale-free and fractal, the following
conditions of a generator G must be satisfied.
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(a)

(b)

(c)

Figure 4.4: (a) The procedure of edge replacement by a generator G. A generator
replaces an edge in a way that the positions of the root nodes of the generator
match those of the terminal nodes of the edge. (b) The generator Guv for (u, v)-
flower. (c) The generator Gshm for Song-Havlin-Makse model. (a)-(c) White
nodes represent the root nodes of generators.

• The two root nodes are symmetric to each other.

• The degree of the root node is at least 2.

• The shortest path distance between the two root nodes is longer than 1.

The first condition is, in other words, the generator structure is invariant when
the two root nodes are swapped. This condition is required for the model to
be deterministic. The model without the first condition is discussed in details
in [66]. The second and third conditions are necessary conditions for scale-free
and fractal properties, respectively. As long as the three conditions are satisfied,
the generator G can be arbitrarily selected. This model encompasses (u, v)-
flower and SHM model. In fact, (u, v)-flower can be constructed by choosing a
cycle graph with u + v nodes as a generator and assigning the two nodes which
are separated by distance u. Similarly, SHM model (with parameter e = 0) is
constructed by a generator of two connected m-edge star graphs. See Fig. 4.4(b)
and (c). Figure 4.5 shows an example network generated by the deterministic
model.

In the following explanation, we use symbols listed in Table 4.1. Let us now
determine the numbers of edges and nodes in the t-th generation network Gt.
Initially, the numbers of edges and nodes are respectively M0 = 1 and N0 = 2.
The number of edges in Gt grows from that of Gt−1 by a factor of mgen as each
edge is replaced by G, i.e.

Mt = mgenMt−1. (4.31)
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Figure 4.5: The 1st, 2nd, and 3rd generation networks formed by the determin-
istic model of HFSFNs.

Table 4.1: The notations for the deterministic model of HFSFNs.
ngen : the number of nodes in G
mgen : the number of edges in G
nnr : the number of the non-root nodes of G

(nnr = ngen − 2)
κ : the degree of the root node of G

knr
i : the degree of non-root node i of G
λ : the shortest path distance between the

root nodes of G

By solving the recurrence relation (4.31) under the initial condition M0 = 1, the
number of edges in Gt is given by

Mt = mt
gen. (4.32)

The number of nodes in Gt increases as

Nt = Nt−1 + nnrMt−1, (4.33)

because every replacement of an edge adds nnr nodes to the network. Substitut-
ing Eq. (4.32) into the recurrence relation (4.33), we attain

Nt − Nt−1 = nnrm
t−1
gen . (4.34)

The number of nodes in Gt is determined by solving the recurrence equation
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(4.34) under the condition N0 = 0, i.e.

Nt = N0 +
t−1∑
t′=1

nnrm
t′

gen

= 2 + nnr
mt

gen − 1
mgen − 1 . (4.35)

When t � 1, Eq. (4.35) is approximated as

Nt ' nnr

mgen − 1mt
gen. (4.36)

From Eqs. (4.32) and (4.35), the mean degree 〈k〉t is given by

〈k〉t = 2Mt

Nt

=
2mt

gen(mgen − 1)
2(mgen − 1) + nnr(mt

gen − 1) . (4.37)

In the limit of t → ∞, the mean degree takes a finite value,

〈k〉∞ = 2(mgen − 1)
nnr

. (4.38)

Next, let us consider the number Nt(k) of nodes with a given degree k in
Gt. The degree of a k-degree node in Gt−1 increases to κk in Gt. Introducing a
function N (x) such that

N (x) =

x if x ∈ N
0 otherwise,

(4.39)

the number Nt(k) of k-degree nodes in Gt is expressed by a recurrence relation

Nt(k) = Nt−1 [N (k/κ)] + Mt−1

nnr∑
i=1

δk,knr
i

. (4.40)

By solving Eq. (4.40) under the initial condition N0(k) = 2δk,1, we obtain

Nt(k) =
t∑

t′=1

[
Nt′−1 [N (k/κ)] + Mt′−1

nnr∑
i=1

δk,knr
i

]

= 2δk,κt +
t∑

t′=1

nnr∑
i=1

mt′−1
gen δk,κt−t′ knr

i
. (4.41)

The moments of the degree can be calculated from Eq. (4.41),

〈kn〉t = 1
Nt

∑
k

knNt(k). (4.42)
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In fact, the second moment is obtained as

〈k2〉t =



(mgen − 1)
[
2κ2t(mgen − κ2) + Knr

2 (mt
gen − κ2t)

]
(mgen − κ2)

[
2(mgen − 1) + nnr(mt

gen − 1)
] for mgen 6= κ2

κ2(t−1)(κ2 − 1)(2κ2 + tKnr
2 )

2(κ2 − 1) + nnr(κ2t − 1) for mgen = κ2

.

(4.43)

where Knr
2 =

nnr∑
i=1

(knr
i )2. For t → ∞, the second moment approaches

〈k2〉∞ =


Knr

2 (mgen − 1)
nnr(mgen − κ2) for mgen > κ2

∞ for mgen ≤ κ2
. (4.44)

Again, the degrees of nodes in Gt−1 are multiplied by a factor κ in Gt. Hence
the number of k-degree nodes in Gt−1 must be equal to the number of κk-degree
nodes in Gt if k > maxi∈Nnr

G
[knr

i ] where Nnr
G is the set of non-root nodes in G. That

is,

Nt−1(k) = Nt(κk) (4.45)

for k > maxi∈Nnr
G

[knr
i ]. Let us assume that the degree distribution asymptotically

approaches P (k) for k � 1 and t � 1. Then, both sides of Eq. (4.45) can be
rewritten in terms of P (k) as

Nt−1P (k)dk = NtP (κk)d(κk) (4.46)

for k � 1 and t � 1. Using Eq. (4.35), the relation simplifies to

P (k) = mgenκP (κk). (4.47)

Eq. (4.47) has a solution in the form P (k) ∝ k−γ , with

γ = log mgen

log κ
+ 1. (4.48)

Therefore, a network formed by this model is scale-free and its scale-free expo-
nent is solely determined by the structural features of its generator G, namely
the number mgen of edges in G and the degree κ of the root node of G.

Finally, let us consider the diameter Lt of the t-th generation network Gt.
Actually, the exact form of the diameter cannot be determined because the
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diameter of Gt strongly depends on the detailed structure of a generator G. It
is however possible to obtain the asymptotic behavior of the diameter to assess
the fractality of networks. This is done by assuming that we know the diameter
Lt−1 of Gt−1. Given Lt−1, the diameter Lt of Gt can be estimated from the fact that
the shortest path distance between the pair of nodes which gives the diameter
Lt−1 in Gt−1 grows by a factor of λ. For convenience, we denote the shortest
path whose length is the diameter Lt−1 in Gt−1 by Pmax

t−1 . Let us also refer to the
node, which is most distant from the root node and does not belong to paths
connecting the two root nodes, as the l-max node. The pair of nodes which
becomes most distant in Gt is then updated to the pair of the l-max nodes which
belong to the generators that replace the two terminal edges of Pmax

t−1 . Denoting
the distance between the l-max node and the root node in G by L0, the diameter
Lt in Gt is expressed in terms of Lt−1 as

Lt = λLt−1 + 2L0. (4.49)

In a sufficiently large network, i.e. t � 1, we have λLt−1 � 2L0. Thus, the
diameter Lt of Gt is approximated by

Lt ' λLt−1. (4.50)

From Eqs. (4.35) and (4.50), the relation between the number Nt of nodes and
the diameter Lt in Gt is obtained as

Nt ∝ LDf
t , (4.51)

and the fractal dimension in a cluster-growing sense is given by

Df = log mgen

log λ
. (4.52)

This result indicates a network formed by this model is fractal, as long as the
third condition for generators stated in p.30 is satisfied. If the condition is
violated, i.e. λ = 1, the fractal dimension diverges and the network becomes
small-world.

Local and global clustering coefficients as well as nearest-neighbor degree
correlations are also exactly solvable in this model. The authors of [66] addition-
ally present the critical exponents and the critical point of the bond-percolation
transition on FSFNs generated by this model. Refer [66] for more details.

We have so far derived scale-free exponent and fractal dimension of networks
generated by the deterministic model of HFSFNs. The results imply that the
scale-free and fractal properties of FSFNs are solely determined by the structural
features of a single generator. This hints that those of real-world FSFNs are
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possibly determined only by their structural unit, or "generator." It is however
unlikely that real-world FSFNs are formed by a single generator, as they appear to
take much more complicated structures. In the following section, we introduce
a stochastic model of HFSFNs, which extends the deterministic model.

4.3.2 Stochastic Model
While the deterministic model of HFSFNs generalizes the two representative
models of FSFNs and enables the formation of networks with much diverse val-
ues of scale-free exponent and fractal dimension, real-world FSFNs are unlikely
to be formed from a single generator. Thus the model is limited in its applica-
bility to reproduce real-world FSFNs. To better simulate real-world FSFNs, we
extend the deterministic model by introducing more than one generators in the
network formation procedures. The stochastic model with two generators are
discussed in [68].

In the stochastic model, we prepare a set {Gi}Ngen
i=1 of generators and a set

{pi}Ngen
i=1 of probabilities, where Ngen is the number of generators. The sum of the

probabilities in the set must be unity, i.e.
Ngen∑
i=1

pi = 1. (4.53)

We then form a network by iteratively replacing every edge of the previous gen-
eration network with one of the generators with its corresponding probability.
In other words, an edge is replaced by Gi with probability pi. Two example
networks formed by the stochastic model are shown in Fig. 4.6. Let us denote
the number of edges, the number of non-root nodes, the degree of the root node
and the shortest path distance between the root nodes of Gi by mgen

i , nnr
i , κi, and

λi, respectively.
We initiate a network G0 from a graph of two nodes connected by an edge. To

construct the first generation network G1, each edge in G0 is replaced by one of
the generators with probabilities {pi}Ngen

i=1 . Hence the expected number of edges
in G1 is given by

M1 =
Ngen∑
i=1

pim
gen
i = mgen. (4.54)

Similarly, the expected number of edges in G2 is expressed as

M2 =
Ngen∑
i=1

pim
gen
i ·

Ngen∑
j=1

pjm
gen
j

= m2
gen. (4.55)
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(a)

(b)

Figure 4.6: The 1st, 2nd, and 3rd generation networks formed by the stochastic
model of HFSFNs with (a) two generators and (b) three generators. (a) Genera-
tors G1 and G2 shown in the upper left replace edges with an equal probability
p1 = p2 = 1/2. (b) Generators G1 G2, and G3 shown in the upper left replace
edges with an equal probability p1 = p2 = p3 = 1/3.

Hence, the expected number of edges in Gt is attained as

Mt = mt
gen. (4.56)

By analogy with the deterministic model, the number Nt of nodes, the number
Nt(k) of k-degree nodes, and the diameter Lt are obtained by simply replacing
the structural features mgen, nnr, κ, and λ of G by the expected values mgen, nnr,
κ, and λ of {Gi}Ngen

i=1 ,

mgen =
Ngen∑
i=1

pim
gen
i , (4.57)

nnr =
Ngen∑
i=1

pim
nr
i , (4.58)

κ =
Ngen∑
i=1

piκi, (4.59)

λ =
Ngen∑
i=1

piλi. (4.60)
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(a) (b)

Figure 4.7: The possible values of scale-free exponent γ and fractal dimension
Df of networks generated by (a) the deterministic model and (b) the stochastic
model. In both cases, κ (κ) and λ (λ) are shifted within the range of [2, 20]. The
minimum mgen for a given pair of κ and λ is given by the relation mmin

gen = λ+2κ−2.
mgen(mgen) is shifted in the range [mmin

gen , 100].

Therefore, some of the essential quantities of Gt are given by:

Mt = mt
gen, (4.61)

Nt = 2 + nnr
mt

gen − 1
mgen − 1 , (4.62)

γ = 1 + log mgen

log κ
, (4.63)

Df = log mgen

log λ
. (4.64)

Notice that the possible values of scale-free exponent and fractal dimension
can be continuously tuned, because the values of mgen, κ, and λ in the stochastic
model are real numbers whereas mgen, κ, and λ in the deterministic model are
integers. This indicates that a much broader class of FSFNs is represented by the
stochastic model. In fact, Fig. 4.7 clearly shows the possible values of scale-free
exponent and fractal dimension for networks generated by the stochastic model
of HFSFNs cover a wider area in the γ-Df space than those by the deterministic
model.
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4.4 Fractal Scale-free Random Graph
A random graph is a graph whose edges are placed randomly. Random graphs
have played a significant role in the study of complex networks by providing
various sets of networks to which networks of our interest can be compared.
We begin this section with Erdősi-Rényi random graphs (ERRGs), which is one
of the earliest and simplest network models. Despite its simplicity, ERRGs
involve a phase transition of connectivity, which results in a fractal network at
criticality. We then introduce the generalized random graphs, whose degree
distributions can be arbitrarily controlled. Finally, we describe fractal scale-free
random graphs, which will appear in our main results.

4.4.1 Erdősi-Rényi Random Graph and Its Criticality
Erdősi-Rényi random graph (ERRG) was first introduced in the late 1950s to
study graphs by the means of probability theory. In an ERRG, the number N of
nodes is fixed and each pair of nodes is connected by an edge with probability
p. Let us denote the ERRG model by GER

N,p. When p = 0, there are no edges in the
network and all the nodes are isolated. When p = 1, all the nodes are connected
to each other and the network is complete. The probability that a graph G(N, M)
with N nodes and M edges appears is given by

P (G) = pM(1 − p)K−M (4.65)

where K =
(

N

2

)
= N(N − 1)

2 . If we simply focus on the number M of edges in

G, the probability to obtain M -edge network is

P (M) = KpM(1 − p)K−M . (4.66)

Using Eq. (4.66), we get the mean number 〈M〉 of edges in GER
N,p as

〈M〉 =
K∑

m=0
mP (m) = pK. (4.67)

From Eq. (4.67), the average degree 〈k〉 is attained

〈k〉 =
〈2M

N

〉
= 2pK

N
= p(N − 1). (4.68)

The degree distribution P (k) of GER
N,p is given by a binomial distribution

P (k) =
(

N − 1
k

)
pk(1 − p)N−1−k. (4.69)
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When the number of nodes N is sufficiently large, the degree distribution is well
approximated by a Poisson distribution

P (k) ' 〈k〉ke−〈k〉

k! . (4.70)

In this sense, ERRGs in the large N limit are often called Poisson random graphs.
Many properties of Poisson random graphs are exactly solvable. For instance,
the local clustering coefficient is obviously given by

C = p = 〈k〉
N

, (4.71)

and the average shortest path distance is known to be the proprotional to log N ,
i.e.,

〈l〉 ∝ log N, (4.72)
which indicates that ERRGs are small-world. Refer [71] for more details.

An important feature of ERRGs is a phase transition from a low-density phase
to a high-density phase. While there exist numerous small components in the
low-density phase, most of the nodes are contained in a single giant component
in the high-density phase. The average component size 〈S〉 is in fact derived as

〈S〉 = 1
1 − 〈k〉 + 〈k〉S(〈k〉) (4.73)

by utilizing generating functions[69]. Here, S is the fraction of the giant com-
ponent to the entire network. Similarly, the critical point pc at which the mean
component size diverges is also obtained from the arguments by generating
functions as

〈k2〉
〈k〉

' pcN(1 + pcN)
pcN

= 1 + pcN = 2,

∴ pc = 1
N

. (4.74)

The solid line in Fig. 4.8 shows the profile of the average component size. The
divergence of the average component size can be observed at 〈k〉 = pcN = 1.
We can also confirm the emergence of the giant component, because S → 0 for
〈k〉 = pcN < 1 whereas S > 0 for 〈k〉 = pcN > 1. The universality class of
percolation at ERRGs is the same as that of percolation at Bethe lattice[6].

It is known from percolation theory that the giant component at the criti-
cal point possesses a fractal property[59]. The fractal dimension of the giant
component of ERRGs at criticality is

Df = 2. (4.75)
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Figure 4.8: The mean component size (solid line) and the giant component size
(dashed line) of Poisson random graphs. The figure is taken from [2]. The axis
labels are slightly modified without changing their meanings.

4.4.2 Generalized Random Graph
While ERRGs prove to be a useful model whose properties can be analytically
calculated, the degree distribution in the form of binomial distribution is a sig-
nificant limitation in its applicability because many real-world networks do not
possess binomial degree distributions. A generalized random graph, or the con-
figuration model, is a random graph with an arbitrary degree distribution[69].
In this model, we generate a network in the following procedures:

(1) Initialiate a network with N isolated nodes.

(2) Prepare a degree sequence {k1, k2, . . . , kN} of length N in accordance with
a given degree distribution P (k). The sum of the degree sequence must
be even.

(3) Assign ki stubs (half-edge) to each node i.

(4) Choose two stubs randomly and connect them while avoiding the forma-
tion of multple edges and self-loops.

The generalized random graphs have been extensively studied since the 1970s
and various analytical results such as the condition for existence of a giant
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component (known as the Molley-Reed criterion)[72], the expected size of the
giant component[73], and the average size of non-giant components[69] have
been known.

4.4.3 Fractal Scale-free Random Graph
A fractal scale-free random graph (FSFRG) is a random graph with scale-free
and fractal properties. In order to form FSFRGs, we utilize the generalized
random graphs introduced in Sec. 4.4.2 and the fact the giant component at
the percolation transition point exhibits the fractal property. By extracting the
giant components of scale-free random graphs at criticality, we can form FSFRGs
characterized by the scale-free exponent γ′ given by

γ′ = γ − 1 (4.76)

where γ is the scale-free exponent of the original scale-free random graph[70].
At the percolation transition point, the relation

〈k2〉
〈k〉

= 2 (4.77)

holds as in the case of ERRGs [see Eq. (4.74)], because generalized random graphs
have no degree correlations. This implies that for obtaining an FSFRG, the
original scale-free random graph needs to have a power-law degree distribution
P (k) satisfying Eq. (4.77). The fractal dimension Df of a FSFRG is known as

Df =


2 if γ ≥ 4,
γ − 2
γ − 3 if 3 < γ < 4.

(4.78)

Notice that γ is the scale-free exponent of the original scale-free random graphs.
In terms of the scale-free exponent γ′ of a FSFRG, Eq. (4.79) is rewritten as

Df =


2 if γ′ ≥ 3,

γ′ − 1
γ′ − 2 if 2 < γ′ < 3.

(4.79)

Refer [3] for its derivation. The possible combination of scale-free exponent and
fractal dimension of FSFRGs is shown in Fig. 4.9.
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Figure 4.9: Configuration space of FSFRGs. The red line indicates the possible
combination of scale-free exponent and fractal dimension.



Chapter 5

Multifractality

We have so far discussed the fractal property of networks characterized by a
fractal dimension Df . However, a fractal dimension does not suffice to describe
some features of complex systems or distributions. In such a case, multifractals
which involve a full spectrum of infinitely many exponents often provide well-
organized descriptions.

In this chapter, we briefly introduce multifractality of distributed quantities
in Euclidean spaces and in networks. We then move on to describe the multi-
fractality of network structures. We close this chapter by stating the purposes
of our work.

5.1 Multifractality of Distributed Quantities
As stated above, multifractal property is a property of systems or distributions
which require an infinite number of scaling exponents for a full description. For
example, let us consider the distributions of trace elements, such as gold, on
the earth. Most of the trace elements are usually distributed unevenly, highly
concentrated in a few "hotspots" while extremely scarce on the rest. In other
words, the distributions of those trace elements are so heterogeneous that the
distributions of different intensities follow different scaling from one another.
Such heterogeneous distributions are not limited to trace elements but rather
omnipresent in nature. To name a few, the distribution of energy dissipation
in fluid turbulence[40], the growth probability distribution of diffusion-limited-
aggregation[43], and the spacial distributions of the wavefunctions at the criti-
cality of Anderson transition[74] are indeed multifractal.

Multifractal analysis is an analysis to determine the spectrum of infinitely
many exponents which describe a multifractal distribution. In the following
two sections, we assume a measure µi is distributed at a position i. The measure

44
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satisfies the normalization condition over the space, i.e.∑
i

µi = 1. (5.1)

Though the concept of multifractality was initially introduced by Mandelbrot
for systems in Euclidean spaces, it has been extended to networks in which ge-
ometric supports are absent[45]. The multifractality in networks is assessed by
the shortest path distances as an alternative to Euclidean distances. In addition,
a measure µi in a network corresponds to the measure at node i. By consid-
ering so, we can treat multifractality in Euclidean spaces and that in networks
equivalently. The arguments in the following sections hence stand valid for sys-
tems embedded in Euclidean spaces as well as for complex networks. However,
the concept of multifractality and the multifractal analysis will be explained
in Sec. 5.1.1 and 5.1.2 for systems embedded in Euclidean space because of its
simplicity.

5.1.1 Mass Exponents
Similar to the ordinary fractal analysis, we will renormalize the distribution of
measure µi and identify the self-similarity of the distribution by investigating
the distribution of the renormalized measure. To renormalize the distribution,
we first box-cover the distribution with a fixed box size l. See Fig. 5.1. Denote
the set of boxes b(l) of size l used to cover the distribution by B(l). Let us define
a box measure as the sum of measures in a box b(l) of size l, i.e.

µb(l) =
∑

i∈b(l)
µi. (5.2)

The q-th moment of the box measure is given by

Zq(l) =
∑

b(l)∈B(l)
[µb(l)]q. (5.3)

If the distribution is self-similar, the behavior of Zq(l) should be independent of
the renormalization scale l. That is, a power-law relation

Zq(l) ∝
(

l

L

)τ(q)

(5.4)

stands between l and Zq(l). L is the system size. Hence, the exponent is
represented by

τ(q) = lim
l→0

log Zq(l)
log l

, (5.5)
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Figure 5.1: Renormalization of measures by dividing the system of size L into
smaller boxes of size l.

and we call τ(q) the mass exponent. If τ(q) is nonlinear with regard to q, we say
the distribution of µi is multifractal.

Note from Eq. (5.3) that a negative q value emphasizes smaller box measures
while a positive q value intensifies larger box measures. If q = 0, the right-hand
side of Eq. (5.3) becomes the number of boxes b(l) in B(l). We therefore have

τ(0) = −Df , (5.6)

because Eq. (5.4) reads NB ∝ l−τ(q) and the fractal dimension is given by NB ∝ lDf .
Furthermore, in the case of q = 1, we have

Z1(l) =
∑

b(l)∈B(l)

∑
i∈b(l)

µi =
∑

i

µi = 1. (5.7)

Combining with Eq. (5.4), we have

τ(1) = 0. (5.8)

Let us now consider the fractal dimension of Zq(l). Assuming uniformly
distributed measures on a fractal support with Df , Zq(l) should be distributed
with the same Df independent of q. From the normalization condition (5.1)
µi ∝ L−Df , and hence

Zq(l) ∝
∑

b(l)∈B(l)
(lDf L−Df )q ∝

(
L

l

)Df

· (lDf L−Df )q ∝
(

l

L

)Df(q−1)

. (5.9)

Hence, the fractal dimension of τ(q) is expressed as

Dq = τ(q)
q − 1 . (5.10)

Dq is called the generalized dimension.
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Figure 5.2: The schematic figure of multifractal spectrum. If the distribution of
Lipschitz-Hölder exponent αi is self-similar, the multifractal spectrum is defined
by the fractal dimension f(α) of the α-distribution.

5.1.2 Lipschitz-Hölder Exponents
Consider again the box-covering B(l) of the distribution with box size l. If the
box measure µb(l) of a box b(l) scales with box size l as

µb(l) ∝ lα, (5.11)

then the exponent α is expressed as

α = lim
l→0

log µb(l)

log l
. (5.12)

This exponent α is called the Lipschitz-Hölder exponent. This exponent quan-
tifies the fractality of local structures. Let us consider the distribution of boxes
whose Lipschitz-Hölder exponent is αi and assume the distribution of the boxes
with αi is self-similar. Then we call the fractal dimension of the distribution of αi

the multifractal spectrum and denote it by f(α). See Fig. 5.2. Given the number
N(αi) of boxes with αi, the multifractal spectrum is determined by

f(α) = lim
L→∞

log N(α)
log L

. (5.13)

The mass exponent τ(q) and the multifractal spectrum f(α) are two interde-
pendent exponents characterizing the same distribution of µi. To understand
the relation between τ(q) and f(α), let us return to the q-th moment of box
measures. From Eq. (5.11), the q-th moment in Eq. (5.3) is rewritten as

Zq(l) ∝
∑

b(l)∈B(l)
lαq. (5.14)
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Since α is a exponent which continuously changes its value depending on boxes,
the summation in Eq. (5.14) can be rewritten in terms of integration by α. Con-
sider the subset Sα of boxes with α, and let us assume the number of Sα in the
range [α, α+dα] is given by ρ(α)dα. Then the number of boxes of size l contained
in the subset Sα is proportional to l−f(α) and hence the number of nodes in the
interval [α, α + dα] is given as

N(α)ρ(α)dα = ρ(α)l−f(α)dα. (5.15)

By substituting the summation ∑b(l)∈B(l) by integral
∫

ρ(α)l−f(α)dα, we get

Zq(l) ∝
∫

ρ(α)lαq−f(α)dα. (5.16)

By solving the integral by saddle-point method, we have

d

dα
[αq − f(α)] = 0, (5.17)

which is evaluated as

Zq(l) ∝ ρ[α(q)]lαq−f [α(q)]. (5.18)

The mass exponent is then expressed as

τ(q) = α(q)q − f [α(q)]. (5.19)

Inversely, we have the multifractal spectrum as

f(α) = q(α)α − τ [q(α)]. (5.20)

Equations (5.19) and (5.20) imply that q(α) and α(q) are related to each other
through the Legendre transformation. Hence the Lipschitz-Hölder exponent is
alternatively obtained by

α = dτ(q)
dq

. (5.21)

5.2 Multifractality of Complex Networks
In the previous section, we have described multifractality of distributions rather
than structures. However, networks can implicitly encompass heterogeneity,
such as scale-free property, due to the absence of physical restrictions. In 2011,
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Furuya and Yakubo predicted that the structures of FSFNs themselves are mul-
tifractal and demonstrated the multifractality of some of fractal scale-free net-
works[38].

In their work, every node in a network gives an equal measure, and the mul-
tifractal analysis of the distribution of the measure is conducted. The network is
covered by overlapping boxes (subgraphs) of size l, as overlaps are unavoidable
for box-covering of graphs in a manner that each box contains the maximum
possible number of nodes[61]. As such, measures at each node must be normal-
ized not by the number of nodes, but rather by the sum of the number of nodes
in all the boxes, i.e.

µi = 1∑
b(l)∈B(l)

∑
i∈b(l)

. (5.22)

Using the measure defined in Eq. (5.22), it is relatively simple to show that
Eqs. (5.6) and (5.8).

5.2.1 Bifractality of (u, v)-flower
To confirm the multifractality of network structures, Furuya and Yakubo[38]
first examined the (u, v)-flower. They assigned the equal measure in Eq. (5.22)
to every node of a FSFN generated by the model. In order to cover the network,
they applied the same covering scheme as the scheme II in Sec. 4.1. That is,
we cover the network by boxes in the order of descending order of degrees.
See Fig. 5.3(b). Furuya and Yakubo argue that it is even more important to
cover a network with less boxes in the multifractal analysis than in the fractal
analysis[38].

We consider covering the t-th generation (u, v)-flower by boxes of size Lt′

(u, v : even, 1 � t′ � t). We use the same notations as those in Sec. 4.1 for the
number of nodes and the diameter in the t-th generation network. The number
Nb(s,Lt′ ) of boxes centered at the s-th largest hubs is equal to the number of the
s-th largest hubs. Hence it is given by

Nb(s,Lt′ ) = Ns − Ns−1 (5.23)

for 1 ≤ s ≤ t − t′. The subscript b(s, Lt′) represents a box of size Lt′ centered
at one of the s-th largest hubs. The number of nodes νs(Lt′) in the box b(s, Lt′)
is counted by taking into account the number of the t′-th generation networks
connected to the hub 2t−t′ , the number of t′-th generation networks connected to
to the s-th largest hub 2s−1, and half the number of eges in the t′-th generation,
Nt′/2. We thus obtain

νs(Lt′) = 2t−t′−sNt′ + 1 ' 2t−t′−sNt′ . (5.24)
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(a) (b)

Figure 5.3: Two schemes to cover the third generation (u, v)-flower with u = v =
2. (a) The network is covered with the first generation (u, v)-flowers. (b) The
network is covered by four subgraphs of size l = 2 centered at the largest hubs
(green circles) and 8 subgraphs of size l = 2 centered at the second largest hubs
(blue circles). The figure is taken from [38].

The number of nodes in all the boxes is given by

∑
b(l)∈B(l)

∑
i∈b(l)

=
t−t′∑
s=1

Nb(s,Lt′ )νs(Lt′) = wt(w − 2)
w − 1 (5.25)

where w = u + v. From Eq. (5.25), the measure is defined as

µi = w − 1
wt(w − 2) . (5.26)

The box measure of b(s, Lt′) is then written as

µb(s,Lt′ ) =
∑

i∈b(s,Lt′ )
µi = w − 1

wt(w − 2)Ns. (5.27)

The q-th moment of the box measure is then

Zq(Lt′) =
t−t′∑
s=1

Nb(s,Lt′ )
[
µb(s,Lt′ )

]q

= wt(1−q)

Wq

(2q

w

)t−1
(Wq − 1)

(
Lt′ + b

a

) q log w/2
log u

+
(

Lt′ + b

a

) (q−1) log w
log u

 ,

(5.28)
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Figure 5.4: The mass exponents of (2, 2)-, (2, 3)-, and (3, 3)-flowers. The numbers
of generations of the networks are 8, 7, and 6, respectively.

where we used the following notations

Wq = w − 2q

w − 2 , a = u(u − 3) + v(u + 1
2u(u − 1) , b = v − u

u − 1 . (5.29)

We therefore have the mass exponent

τ(q) =


(q − 1)log(u + v)

log u
for q <

log(u + v)
log 2

q
log(u + v)/2

log u
forq ≥ log(u + v)

log 2

, (5.30)

which is characterized by two distinct lines. Equation (5.30) is exact for even
u and v, but it also approximates well for odd u and v. The mass exponent
τ(q) obtained in Eq. (5.30) is numerically confirmed by numerical calculations
based on the compact-box-covering algorithm[60] (in [38]) and the sandbox
algorithm[45] (in [45] as well as by myself).

It should be noted that the multifractal analysis of the (u, v)-flower with the
covering scheme in Fig. 5.3(a) will result in

Zq(Lt′) = wt(1−q)
(

Lt′ + b

a

) (q−1) log w
log u

, (5.31)
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which gives the mass exponent

τ(q) = (q − 1) log(u + v)
log u

. (5.32)

Hence, the covering scheme in Fig. 5.3(a) does not return a proper scaling for
q > log(u + v)/ log 2. As it is important for the fractal analysis of networks to use
the minimal covering, the same is true about the multifractal analysis.

5.2.2 Mean-Field Arguments
Furuya and Yakubo[38] have generalized their argument for the (u, v)-flower by
employing mean-field arguments. They considered a FSFN of N nodes with
degree distribution P (k) ∝ k−γ . Given the minimal covering of the network
with Nb(l) boxes, the mean number of nodes 〈νl〉 is*1

〈νl〉 = N

Nb(l)
. (5.33)

Here, the number of boxes should satisfy Nb(l) ∝ l−Df due to the fractal property.
In the renormalized network whose degree distribution is Pl(kl), it is assured
that Pl(kl) ∝ k−γ

l with the same scale-free exponent as that of the original
network[27]. If we assume that the renormalized nodes with the same degree
are statistically equivalent to each other and that the number νl(kl) of nodes in
a box which corresponds to the renormalized node of degree kl has negligible
fluctuations over the boxes, νl(kl) is proportional to kl and is

νl(kl) = 〈νl〉
〈kl〉

kl. (5.34)

The (u, v)-flower satisfies Eq. (5.34) in the thermodynamic limit N → ∞.
The box measure is attained by normalizing νl(kl) by the sum of all the nodes

in the box (N in the original work)

µb(l) = kl

〈kl〉Nb(l)
. (5.35)

The q-th moment of the box measure is then

Zq(l) =
∑
b(l)

[µb(l)]q =
N1−q

b(l)

〈kl〉q

∑
kl

kq
l , (5.36)

*1The original argument by Furuya and Yakubo ignores the number of nodes which are
covered by multiple boxes. However, the argument is valid even if we consider the multiply-
covered nodes.
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where we used the change of variables of the summations ∑b(l) = Nb(l)
∑

kl
in

the second equality. Applying the continuum approximation of the degree, we
rewrite the summation to the integration of degree,

Zq(l) =
N1−q

b(l)

〈kl〉q

∫ kmax

kmin
kq

l Pl(kl)dkl ∝
N1−q

b(l)

〈kl〉q

∫ kmax

kmin
kq−γ

l dkl. (5.37)

The integration converges in the case of q − γ < −1, and hence we get

Zq(l) ∝ N1−q
b(l) ∝ l(q−1)Df . (5.38)

Here, we used the fractal property Nb(l) ∝ l−Df .
On the other hand, in the case of q−γ ≥ −1, we must calculate the integration

for a finite Nb(l). In order to do so, we must first identify the maximum and
minimum degrees, kmax and kmin. The maximum degree is obtained as follows:
since Nb(l) is finite, we have∫ ∞

kmax
k−γ

l dkl = k1−γ
max

γ − 1 = 1
Nb(l)

. (5.39)

By solving for kmax, we obtain

kmax =
(

γ − 1
Nb(l)

)1/(1−γ)

. (5.40)

Similarly, we use
∫ ∞

kmin
k−γ

l dkl = k1−γ
min

γ − 1 = 1 (5.41)

to determine kmin as

kmin = (γ − 1)1/(1−γ). (5.42)

Hence, we can express the maximum degree in terms of the minimum degree,

kmax = kminN
1/(γ−1)
b(l) . (5.43)

Using Eq. (5.43), Eq. (5.37) in the case of q − γ ≥ −1 is expressed as

Zq(l) ∝
N1−q

b(l)

〈kl〉q

[
kq−γ+1

q − γ + 1

]kminN1/(γ−1)

kmin

∝ l(q−1)Df · l−Df(q−γ+1)/(γ−1)

∝ lDfq(γ−2)/(γ−1). (5.44)
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Figure 5.5: The mass exponents of Song-Havlin-Makse model with m = 2,
m = 3, and m = 4. The numbers of generations of the networks are 7, 5, and 5,
respectively.

We have used the relation Nb(l) ∝ l−Df again in the second proportionality. To
summarize, we attain the mass exponent

τ(q) =


(q − 1)Df for q < γ − 1

qDf
γ − 2
γ − 1 for q ≥ γ − 1

(5.45)

for a FSFN which satisfies the relation νl(kl) ∝ kl. When the mass exponent of
a FSFN is given by Eq. (5.45), we call the FSFN bifractal. In [38], the authors
presented a numerical confirmation of Eq. (5.45) for SHM model with m = 2.

5.3 Purpose of This Work
Ever since the publication of [38], various studies on the multifractal analysis of
complex networks followed[39, 45–49, 51, 53, 75–79]. However, none has further
investigated the condition for bifractality of FSFNs. As such, we do not know
how general the bifractality of FSFNs is. In fact, so far only the (u, v)-flower and
Song-Havlin-Makse model have been shown to be bifractal.
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Furthermore, Furuya and Yakubo have not provided any discussion in [38]
regarding the relation between the bifractality and the network structures. Their
results indicate there exist two fractalities within the bifractal networks. How-
ever, they do not argue which subgraphs correspond to which fractalties. As an
implication of the two local fractalities, the bifractal networks might have two
distinct rates at which diffusion occurs. It is hence important to identify the
correspondence between local structures and bifractality of a given network for
application purposes.

We therefore attempt to answer the two arising questions, (1) how general
among FSFNs the bifractal property is, and (2) how the bifractality relates
to the subgraphs of networks. For the former, we examine three classes of
FSFNs, namely the general deterministic model of HFSFNs, the general stochas-
tic model of HFSFNs, and the fractal scale-free random graphs. For the latter,
we investigate the distributions of Lipschitz-Hölder exponents within bifractal
networks.



Chapter 6

Bifractality of Fractal Scale-free
Networks

In the previous chapter, we have argued a specific class of fractal scale-free
networks (FSFNs) and indicated the purposes of this work. In this chapter, we
investigate the bifractality in boader classes of FSFNs, which are constructed by
the network models discussesd in Ch. 4. As we will see, the FSFNs generated by
these models are bifractal. In fact, these results suggest that any FSFN displays
a bifractal property.

6.1 Deterministic Model of Hierarchical Fractal Scale-
free Networks

In this section, we derive analytically the bifractality of the deterministic model
of hierarchical fractal scale-free networks (HFSFNs) explained in Sec. 4.3.1. To
conduct the multifractal analysis of the model, we first select an appropriate
renormalization (box-covering) method and then derive the necessary relation
in Sec. 6.1.1. Using this relation, we determine in Sec. 6.1.2 the bifractality of
networks formed by this model. We then identify the relations between local
structures and two fractalities of the bifractal networks numerically in the fol-
lowing subsection. The last argument is supported by an analytical calculation
in the (simplest) case of (2, 2)-flower.

6.1.1 Renormalization Scheme
Consider renormalizing the t-th generation network Gt by subgraphs with a
fixed diameter in a manner which the subgraphs (supernodes) constitute the

56
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e.g. 

Renormalization

Figure 6.1: The example of renormalization for the deterministic model of fractal
scale-free networks. The left figure is the third generation network constructed
from the generator at the upper left. The right figure shows the renormalization
scheme in which boxes constitute the network structure of the earlier generation.

t′-th generation network Gt′ where 0 < t′ < t. See Fig. 6.1. The degree of
supernode i in the renormalized network Gt′ is given by

ki = k0iκ
t′−ti (6.1)

where ti is the generation at which node i first appears in Gt as a non-root node
of degree k0i and κ is the degree of the root node in the generator. The number
of nodes ν(ki) included in supernode i of the degree ki in the renormalized
network G̃t′ can be considered as the number of newly added nodes around the
supernode i during (t − t′) inverse renormalization operations (i.e. operations
to replace each edge with the generator) from G̃t′ to G̃t.

In the first operation from G̃t′ to G̃t′+1, half of edges and nodes in the generator
are added to one of the terminal supernodes of the replaced edge and the other
half belong to the other. Here, the partitionings of edges and nodes do not have
to be exactly half, as long as the diameters of the subgraphs (subgraph i is a graph
composed of nodes belonging to supernode i at the first inverse renormalization
step) are the same and the topology of subgraphs with the same supernode
degree is equivalent to one another. Let mhalf

gen and nhalf
gen be the numbers of edges

and nodes, added to the i-th supernode in this operation. Then, the number of
nodes and edges included in the i-th supernode of G̃t′+1 are given as 1 + kin

half
gen

and kim
half
gen , respectively.

In the t̃-th operation (2 ≤ t̃ ≤ t−t′), every edge belonging to the i-th supernode
in the previous operation is replaced by the generator. Thus, the number of edges
m

(t̃)
i in the i-th supernode at the t̃-th operation is expressed as

m
(t̃)
i = mgenm

(t̃−1)
i , (6.2)
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where mgen is the number of edges in the generator. The number of nodes n
(t̃)
i

in the i-th supernode added during the t̃-th operation is given by

n
(t̃)
i = nnrm

(t̃−1)
i , (6.3)

where nnr is the number of non-root nodes in the generator. By solving the above
recurrence relations, the number of nodes belonging to the i-th supernode is
calculated as

ν(ki) = 1 + ki

nhalf
gen +

t−t′∑
t̃=2

n
(t̃)
i


= 1 + ki

nhalf
gen + nnrm

half
gen

t−t′∑
t̃=2

mt̃−1
gen

 . (6.4)

In the thermodynamic limit t → ∞, the first term (unity) is negligible and we
obtain the relation ν(ki) ∝ ki. The index i of the above relation indicates the
supernode number in the renormalized network G̃t′ . In order to clarify that each
supernode corresponds to a box of size l(= Lt−t′), let us relabel ki as kbl

, whose
index means a box in the box-covering by boxes of size l. We thus derive the
relation

ν(kbl
) ∝ kbl

. (6.5)

This relation guarantees bifractality of deterministic HFSFNs shown in Sec. 4.3.1,
because Eq. (6.4) is equivalent to Eq. (5.34).

Note that this renormalization scheme gives the fractal dimension in a box-
covering sense. The number N t

b(t′) of boxes in this scheme is, as stated above,
equal to the number of supernodes in the renormalized network G̃t′ , i.e.

N t
b(t′) = Nt′ '

nnrm
t′
gen

mgen − 1 , (6.6)

where Nt′ is the number of nodes of the t′-th generation network in the determin-
istic model of HFSFNs. The second approximation is valid when the network
is sufficiently large, t � 1. The box size Lt

b(t′) in this covering scheme is the
diameter of (t − t′)-th generation network, i.e.

Lt
b(t′) = Lt−t′ ' λt−t′

. (6.7)

Taking the logarithms of Eqs. (6.6) and (6.7) and their derivatives with regard to
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t′, we derive the fractal dimension

Dbc
f = −d log N t

b(t′)
d log Lt

b(t′)

= −

d

dt′ log
(

nnr

mgen − 1mt′

gen

)
d

dt′ (t − t′) log λ

= log mgen

log λ
. (6.8)

This fractal dimension in a box-covering sense is equal to the fractal dimension
in a cluster-growing sense from Sec. 4.3.1.

6.1.2 Mass Exponents
Since the scale-free exponent γ and the fractal dimension Df of the networks
generated by the determinisitic model of HFSFNs are given as

γ = 1 +
log mgen

log κ
, Df =

log mgen

log λ
(6.9)

respectively, the mass exponent is obtained as

τ(q) =


(q − 1)

log mgen

log λ
if q <

log mgen

log κ
,

q
log mgen − log κ

log λ
if q ≥

log mgen

log κ
.

(6.10)

We therefore have derived the bifractality of the deterministic model of HFSFNs.
Note from Eq. (6.10) that the difference in the slopes of the mass exponents in
the two regions of the distortion factors is determined by the degree κ of the
root nodes in a generator. When the value of κ is large, the change in slope is
drastic. Since κ is a parameter which determines the scale-free property of the
networks in this model, the bifractality is significantly influenced by its scale-
free property. Reminding that the greater value of κ results in the smaller value
of scale-free exponent γ, we can understand that the degree to which an FSFN
is scale-free determines how "bifractal" it is.

In order to confirm Eq. (6.10), we numerically computed the mass expo-
nents for networks formed from various generators by the means of the sandbox
method proposed by Liu et al.[45, 52]. The algorithm used for numerical com-
putations is explained in Appendix B.2.1.
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Figure 6.2: The plots of q-th moments Zq(r) for the generators at the top right
corner of each figure. The circles indicate the mean Zq(r) values and the stars
show the points used for fitting of τ(q). The blue points are of q = −10.0 and
the red points are of q = 10.0. The colors between blue and red are of integer q
values between −10.0 and 10.0. The profiles of Zq(r) vary between generators
and the right figure is one of the worst cases.

The computed q-th moment Zq(r) for two generators are shown in Fig. 6.2.
The linearity of q-th moment in log-log plots strongly depends on generator
structures. In fact, the partition function Zq(r) in Fig. 6.2(a) is quite linear for
any q, while that in Fig. 6.2(b) contains periodic steps. Note that the scaling of
the q-th moment of the networks nonetheless agrees with theory. The steps in
the q-th moment worsen for HFSFNs formed from generators with more edges
which are not in paths connecting the two root nodes.

The mass exponents for ten generators are shown in Fig. 6.3. Numerically
computed results of mass exponents agree quite well with theoretical predic-
tions. The detailed results for eighteen different generators are also presented
in Appendix D.

6.1.3 Distribution of Lipschitz-Hölder Exponents
Now that we have confirmed the bifractality of HFSFNs formed by the deter-
ministic model, we will look into the relation between the network structures
and the bifractal property. Reminding that the Lipschitz-Hölder exponents α
can be derived by

α = dτ(q)
dq

, (6.11)
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Figure 6.3: The plots of mass exponents τ(q) against distortion factor q for various
generators. The dotted lines are the theoretical lines, and the symbols indicate
the numerical values.

there must be two distinct values of α in bifractal networks, as we see the two
distinct slopes of τ(q) for each bifractal network. We visited, in Sec. 5.1, that
the Lipschitz-Hölder exponents indicate the local fractality in a cluster growing
sense, i.e.

m(l) ∝ lα (6.12)

where m(l) is the mass (the number of nodes) in a box of size l. Hence, we
should be able to observe the distribution of Lipschitz-Hölder exponents*1 in a
bifractal network by visualizing with colors the Lipschitz-Hölder exponent of
the box centered centered at every node.

The distributions of Lipschitz-Hölder exponents can be numerically com-
puted in a network as follows: for each node i ∈ V of a given network,

(1) Conduct the breadth-first-search (BFS) from node i.

(2) Count the number of nodes νi(r) at distance r (1 ≤ r ≤ L) from node i.

(3) Compute the mass of the box centered at node i for each radius r by taking
the sum of νi(r′) for 1 ≤ r′ ≤ r.

mi(r) =
r∑

r′=1
νi(r′) (6.13)

*1It is also referred to as the node-based fractal dimension[53].
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Figure 6.4: The distributions of Lipschitz-Hölder exponents in (a)-(b) bifractal
and (c) unifractal networks. The color map on the right-hand side indicates the
correspondence between the node colors and the Lipschitz-Hölder exponents
in all the three networks. Lipschitz-Hölder exponents in (a)-(c) are numerically
computed with the masses in the interval between the two radii which corre-
spond to 5 and 20 percent of the network diameters.

(4) Determine the Lipschitz-Hölder exponent αi for the box centered at node i
by fitting linearly logarithm of the mass mi(r) and logarithm of the radius
r in the range of 5% to 20 % of the diameter.

The results of the numerical calculation are shown in Fig. 6.4. The color of each
node indicates value of the Lipschitz-Hölder exponent of the box centered at that
node. First thing to note from Fig. 6.4 is that the boxes centered near the hubs,
in both of the bifractal networks (a) and (b), tend to have lower Lipschitz-Hölder
exponents while the boxes at the regions between the hubs have higher Lipschitz-
Hölder exponents. On the other hand, the Lipschitz-Hölder exponents in the
Sierpinski network, a unifractal network with fixed degrees ki = 4 for ∀i ∈ V

and fractal dimension Df = log 3
log 2 , are uniformly distributed (with exception of

the three corners). The comparison of the HFSFNs and the Sierpinski network
also allows us to reconfirm the bifractality, as the bifractal HFSFNs are clearly
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characterized by two distinct fractalities while the unifractal Sierpinski network
is characterized by single fractality.

To further our understanding of the relation between network structures and
their bifractalities, let us analytically derive the two distinct Lipschitz-Hölder
exponents for boxes near the hubs and the non-hubs in the (u, v)-flower. To this
end, the number of nodes in a box for the box-covering scheme II explained in
Sec. 4.1 shall be utilized. In this box-covering scheme, each box size is set to the
diameter of the m-th generation (u, v)-flower (where 1 ≤ m ≤ n), given by

Lm =
(

u + v

2 + v − u

u − 1

)
um−1 − v − u

u − 1 . (6.14)

In addition, denote νm the number of m-th generation (u, v)-flower,

νm = u + v − 2
u + v − 1(u + v)m + u + v

u + v − 1 . (6.15)

The number of nodes νs(Lm) in the box of the size Lm, centered at the s-th largest
hub (1 ≤ s ≤ n − m) can be added up by taking the followings into account:

• the number of the m-th generation (u, v)-flowers connected to the largest
hub is 2n−m,

• the s-th largest hub has 2s−1 less m-th generation (u, v)-flowers connected
to it, and

• only half of the nodes of each m-th generation (u, v)-flower belong to the
box.

Therefore,

νs(Lm) = 2n−m−sνm + 1. (6.16)

The unity is for the hub node at the center of the box.
Since Eq. (6.14) becomes simpler in the case of u = v, let us consider the case

of u = v = 2, hence

Lm = 2m. (6.17)

Similarly, Eq. (6.15) is simplified as

νm = 22m+1 + 4
3 , (6.18)
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and if m is sufficiently large, i.e. m � 1,

νm ∼ 22m+1

3 , (6.19)

thus the number of nodes νs(Lm) in the box of the size Lm, centered at the s-th
largest hub for (2, 2)-flower is

νs(Lm) ∼ 1
32n+m−s+1. (6.20)

Using Eq. (6.17), Eq. (6.20) is rewritten in terms of Lm,

νs(Lm) ∼ 1
32n−s+1Lm ∼ Lm (6.21)

In the end, the Lipschitz-Hölder exponent is obtained as

αhub = 1. (6.22)

Without the assumption that m � 1, Eq. (6.20) is as follows;

νs(Lm) = 2n+m−s+1−log2 3 + 2n−m−s+2−log2 3 + 1. (6.23)

Now that the Lipschitz-Hölder exponent of the box centered near the hubs
is determined, next we must identify another Lipschitz-Hölder exponent of the
boxes centered at the other parts of the (2, 2)-flower (which we call the non-
hubs). The analytical calculation of the Lipschitz-Hölder exponent of the boxes
centered at the non-hubs is difficult, as the non-hub regions are hard to define.
It is however reasonable to argue that the Lipschitz-Hölder exponent of the
boxes at the non-hubs must be equal to the global fractal dimension Df = 2
of (2, 2)-flower because (2, 2)-flower as a whole is, as mentioned in Sec. 4.1,
characterized by Df = 2. Since the majority of nodes in the network is the non-
hubs, it is consistent that the fractal dimension of the entire network matches
the Lipschitz-Hölder exponent of the boxes near the non-hub nodes. Thus, we
can conclude

αnon−hub = Df = 2. (6.24)

The above argument is numerically confirmed as shown in Fig. 6.5.
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Figure 6.5: The Lipschitz-Hölder exponents of the boxes centered at the hubs
(red) and the non-hubs (blue). That of the non-hubs is the average over all the
non-hub nodes.
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6.2 Stochastic Model of Hierarchical Fractal Scale-
free Networks

We have shown, in the previous section, the bifractality of the deterministic
model of HFSFNs and the relation between the bifractality and the network
structures. Though the deterministic model is a model of a broad class of
HFSFNs, real-world FSFNs are unlikely to be formed by the inverse renormal-
ization based on a single generator. In fact, it is more likely that real-world
FSFNs are formed iteratively by multiple structural units. In addition, fractal
dimension Df and scale-free exponents γ of a constructed network is limited be-
cause they are, as explained in Sec. 4.3.1, computed from integer mgen, κ and λ.
To investigate an even broader class of HFSFNs, we conducted the multifractal
analysis of the stochastic model explained in Sec. 4.3.2.

We conducted the multifractal analysis of the HFSFNs generated by the
stochastic model. In this analysis, we first generate a sample of fifty networks
for a given set of generators and their corresponding probabilities. For each
network, the sandbox algorithm is applied to compute its partition functions
Zq(r). We then take the mean 〈Zq(r)〉 of the partition functions Zq(r) for q and
r. Finally we obtain the mass exponent τ(q) for the stochastic HFSFNs model.

The results of the multifractal analyses on the 5-, 6-, and 7-th generation
HFSFNs with a generator pair of (2, 2)-flower and Song-Havlin-Makse model
with t = 2 and the corresponding pair of probabilities (0.5, 0.5) are shown in
Fig. 6.6. The mass exponents at q < γ − 1 agree well with the line computed
from their fractal dimension and scale-free exponent. On the contrary, the
mass exponents at q > γ − 1 are off from the line. Despite the shifts from
the line, as the number of generation increases, the data are approaching the
line. Furthermore, we can confirm that the points at which the mass exponents
bend are also approaching the theoretical threshold with increasingly sharp
transitions. The shifts from the theory at q > γ − 1 are likely to be caused by the
finite size effects, because the hubs in the numerical calculation have not grown
sufficiently. To better see this, we have shown in Fig. 6.6(b) the second derivatives
of the mass exponents. The curvature of the theoretical mass exponent diverges
at q = γ−1 and remains zero at q 6= γ−1. As the number of generation increases,
i.e. the number of nodes grows, the q values which correspond to the minimum
of the curvature approach the theoretical divergence point. The explanation by
the finite size effect is consistent with the fact that the mass exponents aligned
well at q < γ − 1 as the mass exponents at q < γ − 1 correspond to the fractality
of the boxes at the non-hub nodes. The data indicate that the mass exponent in
the thermodynamic limit perfectly aligns with the theoretical one and suggest
that the stochastic model of HFSFNs is also bifractal.
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Figure 6.6: The mass exponents (left) and their second derivatives (right) for the
two-generator stochastic hierarchical fractal scale-free networks of 5- (green),
6- (blue), and 7-th (red) generation. The generators of (2, 2)-flower and Song-
Havlin-Makse model with t = 2 are selected equally with probability of 0.5. The
dashed line on the left panel shows the theoretical line calculated from its fractal
dimension and scale-free exponent. The dashed line on the right panel shows
the theoretical point q at which the slope of its mass exponent changes.

We have additionally conducted the multifractal analyses of the stochastic
HFSFNs with varying stochasticities. We used the same pair of generators as
the previous result. The pairs (p, q) of probabilities were varied from (0.1, 0.9),
(0.3, 0.7), (0.5, 0.5), (0.7, 0.3), to (0.9, 0.1). The first probability of each pair is the
probability that the generator of (2, 2)-flower replaces an edge of the previous
generation. The result is shown in Fig. 6.7.

In all the five cases, the mass exponents generally agree with the theory. We
notice, however, that the mass exponents at q > γ − 1 are slightly off from the
theoretical lines, as was the case for Fig. 6.6. As stated before, the shifts are due
to the finite size-effects. This is also supported by the fact that the mass exponent
for the probability pair (0.1, 0.9) matches the theoretical line best, because the
networks with that probability pair most resemble (2, 2)-flower which does not
have boundaries due to its loopiness and hence the finite-size effect influences
our numerical calculation least.

We further investigated the bifractality of the stochastic model with three
generators. The three generators employed are shown in Fig. 6.8(a). Every edge
in the previous generation network is replaced by one of the three generators
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Figure 6.7: The probability dependence of the mass exponents of the stochastic
model of hierarchical fractal scale-free networks. The mass exponents of HFSFNs
with probability sets (0.1, 0.9), (0.3, 0.7), (0.5, 0.5), (0.7, 0.2), and (0.9, 0.1) are
shown by red circles, blue squares, yellow downside triangles, green upside
triangles, and purple diamonds, respectively. The dashed lines are the corre-
sponding theoretical mass exponents for each probability pair. For visualization
purpose, the mass exponents are shifted vertically.

with an equal probability of 1/3. As was the case with HFSFNs with two gener-
ators, the mass exponents of the three-generator HFSFNs obtained numerically
fit the theoretical line well. In fact, the obtained result aligned better than that
of the two-generator case. This appears to be a result of the choice of the three
generators, because all the three generators have the same root node distance
λ. Such choices of generators enable more reliable multifractal analyses even
in HFSFNs of younger generations. Similar to the case of the two-generator
model, the second derivatives of the mass exponents shown in Fig. 6.8(b) also
supports the bifractality, as the divergence point of the curvature is approaching
the theoretical one.
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Figure 6.8: The mass exponents (b) and their second derivatives (c) for the
three-generator stochastic hierarchical fractal scale-free networks of 6- (blue)
and 7-th (red) generation. The generators shown in (a) are selected equally with
probability of 1/3. The dashed line on the left panel shows the theoretical line
calculated from its fractal dimension and scale-free exponent. The dashed line
on the right panel shows the theoretical point q at which the slope of its mass
exponent changes.
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6.3 Fractal Scale-free Random Graphs
We have, so far, considered fractal scale-free networks generated in hierarchical
manners. Our results indicate that a broad class of hierarchically-formed FSFNs
is characterized by the bifractal structures. To consider an even wider class of
FSFNs, we further investigate the bifractality of fractal scale-free random graphs
(FSFRGs) which are not formed hierarchically.

As we will see, our results show that FSFNs are bifractal even in the absence
of hierarchy. We close this section with our conjecture that any FSFN is bifractal.

6.3.1 Proof of Bifractality
To show analytically the bifractality of the FSFRGs, let us consider an uncorre-
lated scale-free random graph. The conditional probability P (k′|k, l) that a node
at distance l from a node of degree k has degree k′ is then given by

P (k′|k, l) = Q(k′|l) = k′P (k′)
〈k〉

(6.25)

in the uncorrelated case[80]. The average degree 〈k〉l of nodes at distance l is
thus

〈k〉l =
∫

k′P (k′|k, l)dk′ = 〈k2〉
〈k〉

. (6.26)

Reminding that 〈k2〉
〈k〉

= 2 at criticality, we obtain 〈k〉l = 2 at criticality. That is,

the nodes at distance l are on average connected to two nodes, thus forming a
tree graph with long chains.

To count the number of nodes within distance l from a k-degree node, we
first need to identify the number nr(k) of nodes whose distances from a k-degree
node (center), is exactly r. We call the set of nodes whose distance from the center
is r as the r-shell of that center. If the number nr(k′|k) of k′-degree nodes in the
r-shell is known, nr(k) can be solved by

nr(k) =
∑
k′

nr(k′|k). (6.27)

Using the relation*2

nr(k′|k) = kk′

〈k〉r

(
〈k2〉 − 〈k〉

)r−1
P (k′), (6.28)

*2See Appendix C for its derivation.
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Figure 6.9: Conceptual illustration of nl(k′). In this example, for k′ = 4, nl(k′) =
2.

we derive

nr(k) =
∑
k′

nr(k′|k)

= k

〈k〉r

(
〈k2〉 − 〈k〉

)r−1∑
k′

k′P (k′)

= k

(
〈k2〉
〈k〉

− 1
)r−1

. (6.29)

Again, at criticality, we have 〈k2〉
〈k〉

= 2. Hence, we get

nr(k) = k. (6.30)

Finally, we obtain the desired relation by summing up the r-shells from r = 1 to
r = l,

νl(k) =
l∑

r=1
nr(k) + 1 = kl + 1. (6.31)

The second term (unity) is the count for the center node. In the thermodynamic
limit, the unity is negligible and we obtain νl(k) ∝ k, namely Eq. (5.34).
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From the above argument, if we box-cover the FSFRGs by forming boxes of
size l centered at k-degree nodes, the relation ν(kl) ∝ kl is satisfied because the
k-degree nodes possess k long chains, which mean that the boxes centered at
those k-degree nodes have k adjacent boxes. Since the relation ν(kl) ∝ kl stands
for FSFRGs, we have the mass exponents of FSFRGs as

τ(q) =


(q − 1)Df if q < γ′ − 1,

qDf
γ′ − 2
γ′ − 1 if q > γ′ − 1.

(6.32)

From Eq. (6.32), we also obtain

α =


Df if q < γ′ − 1,

Df
γ′ − 2
γ′ − 1 if q > γ′ − 1.

(6.33)

By substituting the fractal dimension in Eq. (4.79), we have αmax and αmin as

αmax =


γ′ − 1
γ′ − 2 if 2 < γ′ < 3,

2 if γ′ > 3,
(6.34)

αmin =


1 if 2 < γ′ < 3,

2(γ′ − 2)
γ′ − 1 if γ′ > 3.

(6.35)

Therefore, we have shown that FSFRGs are also bifractal. Figure 6.10 shows
the scale-free exponent dependence of the two Lipschitz-Hölder exponents in
FSFRGs. It is important to confirm that the two exponents will converge to a
single value in the limit γ′ → ∞, thus the network will be characterized by a
single fractality in the absence of scale-free property.

6.3.2 Numerical Confirmation of Bifractality
Network Formation

We generated FSFRGs with a given scale-free exponent and a given fractal di-
mension in the following manner.

(1) Numerically solve for d and C while satisfying the relation

〈k2〉
〈k〉

= 2, (6.36)
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Figure 6.10: The γ′-dependence of the maximum (blue) and minimum (red)
Lipschitz-Hölder exponents of FSFRGs.

with the degree distribution in the form of

P (k) = C

kγ + dγ
(6.37)

and the normalization condition of P (k). Let us denote the critical value
of d by dc.

(2) Generate a degree sequence which follows the distribution in Eq. (6.37)
with d = dc.*3

(3) Form a generalized random graph with the degree distribution (6.37).

(4) Extract the giant component of the generated graph.

The scale-free exponent and the fractal dimension of the resulting FSFRGs are,
respectively, Eq. (4.76) and (4.79) in Sec. 4.4.3. We can confirm in Fig. 6.11 that
the FSFRGs generated by the above procedure do agree with the theory.

Numerical Multifractal Analysis

The multifractal analyses of FSFRGs are conducted numerically with the sand-
box algorithm. Figure 6.12 shows the mass exponents and their second deriva-
tives of FSFRGs with the scale-free exponent γ = 2.75 and the fractal dimension

*3In order to generate a larger giant component, shift the parameter d to the order phase
slightly, i.e. make d slightly larger than dc.
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Figure 6.11: (a) The degree distribution P (k) of the original scale-free random
graph with 100000 nodes and scale-free exponent γ = 3.5, (b) the degree distri-
bution P ′(k) and (c) the partition function Z0(r) of the FSFRG. The line in each
panel shows the theoretical slope of each plot.

Df = 7
3 ≈ 2.33. The data are calculated from the mean partition functions of fifty

sample networks. Similar to the results for the stochastic model of HFSFNs, the
numerical results in the range q < γ −1 aligned well while the numerical results
in the range q > γ − 1 shifted slightly from the theoretical slope. Nonetheless,
the numerical results are approaching the theoretical line with increasing net-
work sizes. From Fig. 6.12(b), the transition of the slopes occurs more steeply for
the larger FSFRGs and the transition points are also approaching the theoretical
one. The results suggest that the numerical results coincide with the theoretical
prediction in the thermodynamic limit. The results show in Fig. 6.12 support
the analytical result in Sec. 6.3.1. We can therefore conclude that FSFRGs are
also bifractal.

6.4 Discussion
We have so far conducted the multifractal analysis of FSFNs of the three different
types of models. As was the case for the networks generated by (u, v)-flower
and Song-Havlin-Makse model in the prior work by Furuya and Yakubo, the
networks formed by a general deterministic model of FSFNs have been shown
analytically to possess the bifractality. In addition, the networks generated by
a general stochastic model and a non-hierarchical model of FSFNs display the
bifractal structures.
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Figure 6.12: The mass exponents (a) and their second derivatives (B) of FSFRGs
with scale-free exponent γ = 2.75 and fractal dimension Df = 7/3 for varying
network sizes. The green, blue, and red points are the mass exponents of the
FSFRGs for 5000 ≤ N < 10000, 10000 ≤ N < 15000 and 15000 ≤ N < 20000.
The dashed line in (a) is the theoretical mass exponent in Eq. (6.32). The dashed
line in (b) is the theoretical threshold at which the slopes of the mass exponent
change.

The bifractality of these FSFNs relates to the local structures as follows: one of
the two fractalities corresponds to the fractality of the subgraphs near the hubs
and the other corresponds to that of the subgraphs distant from the the hubs. To
be precise, the bifractality of FSFNs is exact in the thermodynamic limit of N →
∞. Thus, in the thermodynamic limit, one of the two fractalities, namely the
minimum Lipschitz-Hölder exponent is distributed on the subgraphs centered at
the hubs of infinite degrees (infinite hubs), while the other, namely the maximum
Lipschitz-Hölder exponent is distributed on the subgraphs centered at the finite-
degree nodes which are infinitely distant from the infinite hubs.

The three models cover a quite diverse class of FSFNs, hierarchical and non-
hierarchical ones. Hence, we conjecture that any FSFN exhibit the bifractality,
with the same correspondence between the bifractality and the local structures
of FSFNs as those of the three models. This hints that the diffusion on any FSFN
is characterized by two anomalous diffusions, one for the hubs and the other for
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the non-hubs. Further investigation into the dynamics on the bifractal networks
is necessary to reveal the implications of the bifractality.



Chapter 7

Conclusion

This work attempted to clarify whether a more comprehensive class of FSFNs is
characterized by the bifractality proposed by Furuya and Yakubo, and how the
bifractality relates to the local structures of FSFNs.

In order to achieve our goals, we conducted the multifractal analysis of FSFNs
generated by the three types of models: the general deterministic and stochastic
models of hierarchical FSFNs and fractal scale-free random graphs. The three
models cover an extensively wide range of FSFNs and the three models likely
simulate the ways by which real-world FSFNs are formed. We found that the
FSFNs formed by the three models all display the bifractal property and the
bifractality correspond to the two distinct fractalities of the near-hub and near-
non-hub structures. The fact that all three models form the bifractal FSFNs
indicates that neither the presence of multiple generators nor the hierarchy
removes the bifractality of FSFNs. That is, the bifractality of FSFNs is a much
more widely existent property.

From the above results, we proposed a conjecture that any FSFN takes the
bifractal structure characterized by two distinct fractalities of the hubs and non-
hubs. This implies that the dynamics on FSFNs, for example, can consist of two
distinctive ones near the hubs and the non-hubs. For instance, if we consider
a diffusion in FSFNs, there may exist two anomalous diffusions whose mean
square distance differ qualitatively near the hubs and near the non-hubs. Such
an implication can possibly influence various dynamics on real-world FSFNs
such as the World Wide Web and protein-protein interaction networks. It is
important that we further investigate the relation between the bifractality of
FSFNs and its dynamics.
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Appendix A

Mathematical Supplement

A.1 Graph Theory
Definition A.1.1 (Undirected graph). A graph G = (V , E) is a set of two sets,
V 6= ∅ and E . The elements of V = {v1, v2, · · · , vN} are distinct (vi 6= vj for
1 ≤ i < j ≤ N ) and are called vertices. The elements of E = {e1, e2, · · · , eM} are
distinct unordered pairs of distinct elements of N , i.e. ek = (i, j) for i, j ∈ V and
i 6= j.

Definition A.1.2 (Subgraph). A subgraph of a graph G = (V , E) is a graph
G ′ = (V ′, E ′) where V ′ ⊆ V and E ′ ⊆ E . If a subgraph G ′ contains all the edges in
G connecting all the nodes in V ′, then G ′ is said to be induced by V ′ and denoted
as G ′ = G[V ′].

Definition A.1.3 (Walk). A walk W (i, j) from node i to node j is an alternating
sequence W = (i, e1, v1, e2, v2, · · · , el, vl, j) of nodes and edges that begins with i
and ends with j, where en = (vn−1, vn) for n = 1, 2, . . . , l. The length of a walk is
defined by the number of edges in the sequence.

Definition A.1.4 (Trail). A trail from node i to node j is a walk from node i to
node j in which no edge is repeated.

Definition A.1.5 (Path). A path from node i to node j is a walk from node i to
node j in which no vertex is visited more than once.

Definition A.1.6 (Geodesic). A geodesic (shortest path) from node i to node j is
a walk with minimal length from node i to node j.

Definition A.1.7 (Circuit). A circuit is a closed trail whose initial and final
vertices coincide.
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Definition A.1.8 (Cycle). A cycle is a closed walk W = (v0, v1, v2, · · · , vl) in which
v0 = vl, l ≥ 3, and vi 6= vj for 0 < i < j < l. A cycle of length k is called k-cycle
and is denoted by Ck.

Definition A.1.9 (Connectedness). Two nodes i and j in a graph G are connected
if and only if there exists a path between nodes i and j. A graph is connected if
all pairs of nodes are connected.

Definition A.1.10 (Tree). A tree is a connected acyclic graph. Alternatively, a
tree is a connected graph with M = N − 1.

A.2 Calculus and Set Theory
Definition A.2.1 (upper bound). A set A ⊂ R is said to be upper bounded if there
exists a number c ∈ R such that a ≤ c for all a ∈ A.

Proposition A.2.2. If A is upper bounded, there exists α ∈ R such that:

(i) a ≤ α for ∀a ∈ A,

(ii) there exists aε ∈ A such that aε > α − ε for ∀ε > 0.

Definition A.2.3 (supremum). The smallest number which bounds a set A ⊂ R
is called the supremum of A and denoted by supa∈A a.

sup A = min{c ∈ R|∀a ∈ A(a ≤ c)} (A.2.1)

Definition A.2.4 (lower bound). A set A ⊂ R is said to be lower bounded if there
exists a number c ∈ R such that a ≥ c for all a ∈ A.

Proposition A.2.5. If A is lower bounded, there exists α ∈ R such that:

(i) a ≥ α for ∀a ∈ A,

(ii) there exists aε ∈ A such that aε < α + ε for ∀ε > 0.

Definition A.2.6 (infimum). The greatest number which bounds a set A ⊂ R is
called the infimum of A and denoted by infa∈A a.

inf A = max{c ∈ R|∀a ∈ A(c ≤ a)} (A.2.2)

Definition A.2.7 (limit superior). The limit superior of a sequence {an} is defined
by

lim
n→∞

an := lim
n→∞

(
sup
m≥n

am

)
. (A.2.3)
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Definition A.2.8 (limit inferior). The limit inferior of a sequence {an} is defined
by

lim
n→∞

an := lim
n→∞

(
inf

m≥n
am

)
. (A.2.4)

Definition A.2.9 (closure). The closure A of a set A is the intersection of all the
closed sets containing A.

Definition A.2.10 (interior). The interior intA of a set A is the union of all the
open sets contained in A.

Definition A.2.11 (boundary). The boundary BdA of a set A is defined by

BdA = A \ intA. (A.2.5)

Definition A.2.12 (dense). A set A is dense in B if B ⊂ A. , i.e. if there exist
points of A arbitrarily close to every point in B.

Definition A.2.13 (compact). The compact set A is any collection of open sets
which covers A has a finite subcollection that also covers A.

A.3 Metric Topology
Definition A.3.1 (metric space). A metric space is a pair of a set S and a function
ρ : S × S → [0, ∞) satisfying the following conditions:

(i) ρ(x, y) = 0 ⇐⇒ x = y

(ii) ρ(x, y) = ρ(y, x)

(iii) ρ(x, z) ≤ ρ(x, y) + ρ(y, z)

for x, y, z ∈ S. The function ρ is called a metric.

For the following, let S be a metric space.

Definition A.3.2 (diameter). Let A ⊂ S. The diameter of A is then defined by

diam A = sup{ρ(x, y) | x, y ∈ A}. (A.3.6)

Definition A.3.3 (distance). Let A, B ⊂ S such that A 6= ∅, B 6= ∅. The distance
between the two sets A and B is defined by

dist (A, B) = inf{ρ(x, y) | x ∈ A, y ∈ B}. (A.3.7)
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Definition A.3.4 (open ball). The open ball of center x ∈ S and radius r > 0 is
defined by

B(x, r) = {y ∈ S | ρ(x, y) < r} . (A.3.8)

Definition A.3.5 (closed ball). The closed ball of center x ∈ S and radius r > 0 is
defined by

B(x, r) = {y ∈ S | ρ(x, y) ≤ r} . (A.3.9)

Definition A.3.6 (δ-neighborhood). The δ-neighborhood Aδ of a set A ⊂ S is the
set of points within distance δ from A.

Aδ = {y ∈ S | dist (x, y) < δ, ∃ x ∈ A} (A.3.10)

Definition A.3.7 (neighborhood). A set A ⊂ S is a neighborhood of a point x ∈ S
if there exists some ball B(x, r) centered at x and contained in A.

Definition A.3.8 (cover). A family U of subsets of S covers a set A ⊂ S if and
only if A is contained in the union of U , i.e.

A ⊂
⋃
i

Ui (A.3.11)

for Ui ∈ U .

Definition A.3.9 (δ-cover). A δ-cover of a set A ⊂ S is a cover U such that
0 < |Ui| ≤ δ for ∀ i. We denote the number of elements in a δ-cover of A by
Nδ(A).

Definition A.3.10 (hyperspace). The hyperspace H(S) for S is the collection of all
nonempty compact subsets of S.

Definition A.3.11 (upper and lower box-counting dimensions). The upper and
lower box-counting dimensions of a set A ⊂ H(S) are defined by

dimBA = lim
δ→0

log Nδ(A)
− log δ

, (A.3.12)

dimBA = lim
δ→0

log Nδ(A)
− log δ

. (A.3.13)

Definition A.3.12 (box-counting dimension). The box-counting dimension of a set
A ⊂ H(S) is defined by

dimB A = lim
δ→0

log Nδ(A)
− log δ

(A.3.14)

if and only if the limit exists, i.e., dimBA = dimBA.
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Definition A.3.12 is equivalent for any of the following:

• δ-cover of A with the smallest number of sets of diameter at most δ

• δ-cover of A with the smallest number of closed balls of radius δ

• δ-cover of A with the largest number of disjoint balls of radius δ with
centers in A

A.4 Measure Theory
Definition A.4.1 (f -field). A collection A of subsets of X is called f -field of X if
the following conditions are satisfied:

(i) ∅ ∈ A

(ii) If A ∈ A, then Ac(= X \ A) ∈ A.

(iii) If A ∈ A and B ∈ A, then A ∪ B ∈ A

Definition A.4.2 (σ-field). A collection A of subsets of X is called σ-field if A is
f -field of X such that if Ai ∈ A (i ≥ 1), then ⋃∞

i=1 Ai ∈ A.

Definition A.4.3 (measurable space). A pair (X, F) of a set X and a σ-filed F
on X is called a measurable space.

Definition A.4.4 (measure). A set function µ on a σ-filed F is a measure on (X, F)
if and only if

(i) µ(∅) = 0, 0 ≤ µ(A) ≤ ∞ for A ∈ F (non-negativity)

(ii) If Ai ∈ F (i = 1, 2, · · · ) and Ai ∩ Aj = ∅ (i 6= j), then

µ

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

µ(Ai). (A.4.15)

Definition A.4.5 (measure space). A tuple (X, F , µ) of a set X , a σ-filed F on X ,
and a measure µ is called a measure space.

Proposition A.4.6. A measure space (X, F , µ) possesses the following properties:

(i) If Ai, Aj ∈ F and Ai ⊂ Aj , then µ(Ai) ≤ µ(Aj).



A.4. MEASURE THEORY 84

(ii) If Ai ∈ F (1 ≤ 1 ≤ n) and Ai ∩ Aj = ∅ (i 6= j), then

µ

(
n⋃

i=1
Ai

)
=

n∑
i=1

µ(Ai). (A.4.16)

(iii) For Ai ∈ F (i = 1, 2, · · · ),

µ

( ∞⋃
i=1

Ai

)
≤

∞∑
i=1

µ(Ai). (A.4.17)

(iv) If Ai ∈ F (i = 1, 2, · · · ) and Ai ⊂ Ai+1 (i ≥ 1), then

lim
i→∞

µ(Ai) = µ

( ∞⋃
i=1

Ai

)
(A.4.18)

(v) If Ai ∈ F (i = 1, 2, · · · ), µ(Ai) < ∞, and Ai ⊃ Ai+1 (i ≥ 1), then

lim
i→∞

µ(Ai) = µ

( ∞⋂
i=1

Ai

)
(A.4.19)

Definition A.4.7 (s-dimensional Hausdorff outer measure). Let us Uδ be a δ-
cover of a set A and define

Hs

δ(A) = inf
Uδ

∑
Ui∈U

(diam Ui)s, (A.4.20)

where Uδ is the set of all countable δ-covers U of the set A. Then, the s-
dimensional Hausdorff outer measure of a set A is defined by

Hs(A) = lim
δ→0

Hs
δ(A) = sup

δ>0
Hs

δ(A). (A.4.21)

Proposition A.4.8. Let S and T be metric spaces with a metric ρ. Let A ⊂ S and
f : A → T be a Hölder mapping such that

ρ(f(x), f(y)) ≤ cρ(x, y)α (A.4.22)

for x, y ∈ A, constant α > 0 and c > 0. Then,

Hs/α(f(A)) ≤ cs/αHs(A). (A.4.23)

If f is a Lipschitz mapping (α = 1), then

Hs(f(A)) ≤ csHs(A). (A.4.24)
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Definition A.4.9 (Hausdorff dimension). Let S be a metric space and A ⊂ S,
and suppose sup ∅ = 0. The Hausdorff dimension is defined by

dimH A = inf
{
s ≥ 0 | Hs(A) = 0

}
= sup

{
s | Hs(A) = ∞

}
. (A.4.25)

That is,

Hs(A) =

0 if s > dimH A

∞ if 0 ≤ s ≤ dimH A
. (A.4.26)



Appendix B

Algorithms for Fractal and
Multifractal Analyses

In this chapter, we summarize some of the algorithms for fractal and multi-
fractal analyses of complex networks. Sec.B.1 is devoted to introduce the algo-
rithms for fractal analysis, namely the greedy coloring, random sequential burn-
ing, compact-box-burning, and maximum-excluded-mass-burning algorithms.
Sec.B.2 introduces the sandbox algorithm for multifractal analysis, which we
used in our main results.

B.1 Fractal Analysis

B.1.1 Greedy Coloring Algorithm
The greedy coloring algorithm is inspired by the fact that the problem of the
box-covering of a graph can be mapped to the graph coloring problem*1. To
approximate the optimal box-covering of a graph G with an arbitrary box size
lB, the greedy coloring algorithm utilizes a dual network G′, whose nodes are
connected if the shortest path distance in G is longer than or equal to lB. We
then conduct a graph coloring procedure, in which every node of G′ is assigned
a color while no adjacent nodes are labeled with identical color. The colors of
nodes in G′ will correspond to the boxes in G.

A simple implementation of the greedy coloring algorithm provided in [60]
is as follows:

(1) Prepare a two dimensional array cilB of size N by lmax
B , which we store the

colors of each node for each box size. lmax
B denotes the maximum box size,

*1The graph coloring problem is known to be NP hard[60].
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which will be the diameter of a given network G.

(2) Assign integer id numbers from 1 to N to all the nodes in the network G.

(3) For each lB, set color 0 for the node whose id number is 1.

(4) From the id number 2 to N , repeat the following procedures:

(a) Compute the shortest path distance lij from the node whose id is i to
all the nodes whose id is j < i.

(b) Repeat for each box size lB from 1 to lmax
B ,

(i) From all the unused colors cjlij
for j < i and lij ≥ lB, select one

color and assign the color as cilB .

B.1.2 Random Sequential Burning Algorithm
The random sequential burning algorithm is one of the simplest box-covering
algorithms proposed by Kim et al. in [61]. Though the algorithm fails to box-
cover a given network with less boxes than the other algorithms[60], it returns a
proper fractal scaling.

The procedures of the random sequential burning algorithm are as follows:

(1) Mark all the nodes in a given network G as not burned.

(2) Randomly select a seed node i from unburned nodes.

(3) Conduct the breadth-first-search within the network to search for all the
nodes j whose shortest path distance from the seed node i is less than lB,
i.e. lij < lB.

(4) Add all the nodes found in Step (3) to a new box and mark them as burned.

(5) Repeat steps (2)-(4) until all the nodes are burned.

B.1.3 Compact-Box-Burning Algorithm
Originally proposed by Song et al. in [60], the compact-box-burning (CBB)
algorithm is one of the most widely used algorithms for fractal analysis of
networks. The central idea behind the CBB algorithm is to take the union of
balls*2 for all the unburned nodes.

The steps of the CBB algorithm are as follows:

*2A ball b(lB) of size lB is defined by a set of all the nodes whose shortest path distance from
one another is less than lB.
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(1) Generate a set C of all the unburned nodes. Let us call C the candidate
set.

(2) Select a random node i from the candidate set C and remove i from C.

(3) Remove from C all nodes j whose shortest path distance from i is greater
than or equal to lB, i.e. lij ≥ lB.

(4) Repeat steps (2) and (3) until the candidate set becomes empty.

B.1.4 Maximum-Excluded-Mass-Burning Algorithm
The algorithms we have so far introduced all result in disconnected boxes. That
is, not all the nodes in a given box are connected to each other. Song et al.
proposed the Maximum-Excluded-Mass-Burning (MEMB) algorithm to avoid
disconnected boxes[60]. In the MEMB algorithm, the definition of a box is
slightly modified as a set of nodes within a radius rB from a center node. For
consistency with the other algorithms, the box size of such a radius-based algo-
rithm is defined as lB = 2rB + 1. The excluded mass which appears in the name
of the MEMB algorithm is defined by the number of unburned nodes j whose
shortest path distance from the center node i is lij < rB.

The MEMB algorithm consists of two parts: the first part for selecting center
nodes and the second part for assigning nodes to boxes. The procedures for the
first part of the MEMB algorithm are as follows:

(1) Set all the nodes in a given network as unburned and non-center.

(2) Compute the excluded mass for each non-center node and select the node
i with the maximum excluded mass as a new center.

(3) Mark all nodes whose distance from the center node i is less than rB as
burned.

(4) Repeat steps (2) and (3) until all the nodes are either burned or centers.

If we want only the number of boxes, we can simply finish the algorithm with
the first part, as the number of center nodes is equivalent to the number of boxes.

The second part consists of the following steps:

(1) For each center node, assign a box number from 1 to NB, where NB is the
number of boxes.

(2) Compute the so called central distance, which is defined by the shortest
path distance from the nearest center, for each node.
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(3) Sort the non-center nodes in a list with an ascending order of central
distances.

(4) Assign to each non-center node i the box number of its neighbor with
the shortest central distance. If there exist more than one nodes with the
shortest central distance, select one of those at random. Remove the node
i from the list.

(5) Repeat step (4) until the list from step (3) is empty.

B.2 Multifractal Analysis

B.2.1 Sandbox Algorithm
Here, we introduce the sandbox algorithm which we used to numerically con-
firm our analytical form of mass exponents. The sandbox algorithm for the
multifractal analysis in complex networks first appear in [45]. The improved
version of the algorithm appears in [52]. The sandbox algorithm utilizes boxes
of radius r centered at Ñ randomly selected nodes. The "mass", or the sum of
measures, of each box is computed and the mean mass at each radius r is used
to calculate the mass exponents. The q-th moment Zq(r) required to compute
the mass exponent is

Zq(r) =
∑

bi∈B(r)
µq

bi
(r) ∝ rτ(q), (B.2.1)

where B(r) is a set of all the boxes which cover the given network and bi is its
element. For r � L, Zq(r) is approximated by

Zq(r) ∼ 〈µq−1(r)〉 = 1
Ñ

Ñ∑
i=1

(
Mi(r)

N

)q−1

, (B.2.2)

where Mi(r) denotes the mass of the box at the i-th center with radius r, i.e.

Mi(r) =
N∑

j=1
H(r − lij). (B.2.3)

lij is the distance between nodes i and j and H(x) is the heaviside step function.
Then, the mass exponent is obtained as follows:

τ(q) = log Zq(r)
log r

. (B.2.4)

The procedures of the sandbox algorithm are as follows:
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(1) Randomly select a set of center nodes from a given network. The number
of center nodes Ñ is at most N .

(2) Conduct the breadth-first search (BFS) from a center node until the maxi-
mum radius rmax(= dL/2e) is reached. Store the number ni(r) of nodes at
each distance r(< rmax) from a center i.

(3) Compute the mass of a subgraph of radius r, centered at node i by

Mi(r) =
rmax∑
r=0

ni(r). (B.2.5)

(4) For each distortion factor q, calculate [Mi(r)/N ]q−1 (= [µi(r)]q−1) of the
mass.

(5) Repeat steps (2)-(4) for all the center nodes.

(6) Take the mean value
〈
[µi(r)]q−1

〉Ñ

i=1
of the (q − 1)-th powered mass.

(7) Compute the mass exponent τ(q) for each q by conducting a linear regres-
sion of log

〈
[µi(r)]q−1

〉Ñ

i=1
with regard to log r.



Appendix C

The derivation of Eq.(6.28)

In Sec.6.3.1, we have used the relation Eq.(6.28). In this section, we show the
derivation of the relation.

Let us begin from the case of r = 1. The number n1(k′|k) can be expressed as

n1(k) = kP (k′|k) (C.0.1)

where P (k′|k) is the conditional probability which describes the nearest-neighbor
degree correlation. As we are concerned with uncorrelated networks, we have

P (k′|k) = k′P (k′)
〈k〉

. (C.0.2)

By substituting Eq.(C.0.2) into (C.0.1), we obtain

n1(k′|k) = kk′P (k′)
〈k〉

. (C.0.3)

Next, let us consider the case of r = 2. n2(k′|k) is the count of nodes of degree
k′′ in the 1-shell which are connected to k′-degree nodes in the 2-shell, i.e.

n2(k′|k) =
∑
k′′

(k′′ − 1)n1(k′′|k)P (k′|k′′)

=
∑
k′′

(k′′ − 1)kk′′P (k′′)
〈k〉

· k′P (k′)
〈k〉

= kk′P (k′)
〈k〉2

∑
k′′

k′′(k′′ − 1)P (k′′)

= kk′P (k′)
〈k〉2

(
〈k2〉 − 〈k〉

)
. (C.0.4)

In the second line of (C.0.4), we substituted Eq.(C.0.2) and (C.0.3).
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Similarly, for 3 ≤ r ≤ l, we iteratively calculate

nr(k′|k) =
∑
k′′

(k′′ − 1)nr−1(k′′|k)P (k′|k′′) (C.0.5)

using n2(k′|k). In the end, we attain

nr(k′|k) = kk′P (k′)
〈k〉r

(
〈k2〉 − 〈k〉

)r−1
, (C.0.6)

and we have derived Eq.(6.28).



Appendix D

Multifractal Analysis of the
Deterministic Model of Hierarchical
Fractal Scale-free Networks

In this chapter, we report the numerical results of the multifractal analysis of the
deterministic model of hierarchical fractal scale-free networks. We conducted
the multifractal analyses of eighteen kinds of HFSFNs formed by the generators
summarized in Table D.1. We present the q-th moments Zq(r), mass exponents
τ(q), and the generalized dimensions Dq for all eighteen networks in Fig. D.1-D.3.
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Table D.1: List of Generators
ID structure mgen κ λ γ Df(= α0) αmin

(a) 4 2 2 3 2 1

(b) 5 2 2 1 + log 5
log 2

log 5
log 2

log 5
log 2 − 1

(c) 6 2 3 1 + log 6
log 2

log 6
log 3 1

(d) 5 2 3 1 + log 5
log 2

log 5
log 3

log 5 − log 2
log 3

(e) 7 3 3 1 + log 7
log 3

log 7
log 3

log 7
log 3 − 1

(f) 9 4 3 1 + log 3
log 2 2 2

(
1 − log 2

log 3

)

(g) 5 2 2 1 + log 5
log 2

log 5
log 2

log 5
log 2 − 1

(h) 6 3 2 1 + log 6
log 3

log 6
log 2 1

(i) 6 3 2 1 + log 6
log 3

log 6
log 2 1

(j) 7 2 2 1 + log 7
log 2

log 7
log 2

log 7
log 2 − 1

(k) 8 2 3 4 3 log 2
log 3

2 log 2
log 3

(l) 9 2 3 1 + 2 log 3
log 2 2 2 − log 2

log 3
(m) 4 2 2 3 2 1

(n) 6 3 2 1 + log 6
log 3

log 6
log 2 1

(o) 8 4 2 5
2 3 1

(p) 6 2 2 1 + log 6
log 2

log 6
log 2

log 6
log 2 − 1

(q) 8 3 2 1 + 3 log 2
log 3 3 3 − log 3

log 2

(r) 8 4 2 5
2 3 1
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Figure D.1: The q-th moments of various HFSFNs.
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Figure D.2: The mass exponents τ(q) of various HFSFNs.
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Figure D.3: The generalized dimension Dq of various HFSFNs.
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