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Abstract

In the last 25 years, extensive research on complex networks has contributed signif-

icantly to our understanding of the structural and dynamic features exhibited by a

wide range of systems. Nevertheless, there are certain phenomena that cannot be

adequately explained using conventional network frameworks. In recent years, there

has been a growing interest in investigating higher-order interactions involving three

or more nodes as a means to elucidate these phenomena. Our primary focus lies

in examining triadic interactions, wherein a third node has the ability to engage in

either positive or negative interactions with an edge connecting two other nodes.

Such interactions can be observed in the neural networks of human brains, as well

as in the interrelationships between species within ecosystems.

This study proposes a model that captures the node dynamics on a network

under the influence of triadic interactions. The primary objective is to investigate

the effects of triadic interactions on the node dynamics. The model has been designed

with the capability to enable or disable triadic interaction. The analytical solution

for the stationary node states in the absence of triadic interactions is presented, and

the impacts of triadic interactions are examined by comparing numerical results in

the presence of triadic interactions with the analytical one in their absence.

The study evaluates triadic interactions on simple network structures with three

nodes that serve as the fundamental subgraph structures of networks with triadic

interactions. We propose conditional correlation coefficients as a measure that signals

the existence of triadic interactions and demonstrate how the signs and magnitude

of triadic interactions can be observed in conditional correlation coefficients.
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2.3.1 Itô’s Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.2 Equivalence to Fokker-Planck Equation . . . . . . . . . . . . . 18

2.3.3 Example: Ornstein Uhlenbeck Process . . . . . . . . . . . . . 20

3 Model 22

3.1 Triadic Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Node Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Examples: 3 Basic Motifs . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Results 26

4.1 In the Absence of Triadic Interactions . . . . . . . . . . . . . . . . . . 26

4.2 In the Prensence of Triadic Interactions . . . . . . . . . . . . . . . . . 38

4



CONTENTS 5

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Conclusion 49

A Derivation of Stationary Node State Distribution 51

B Derivation of Conditional Correlations 53

C Overview of Python Implementations 55



Chapter 1

Introduction

A complex network is the representation of the underlying structure of a complex

system by a network (or, mathematically, a graph)1, which consists of a set of nodes

(vertices) and a set of links (edges). With the explosion in available big data from

technology, biology, and social science over the past 25 years, the interdisciplinary

field of complex networks, i.e., network science, has grown into one of the most

flourishing academic fields [AB02, New03, New18]. Network science originated in

the 1999 paper by Barabási et al., which reported the scale-free property, i.e., the

property that the distribution of degrees (the number of links connecting to a node)

follows a power law with an exponent between two and three [BA99]. Before the

discovery of the scale-free property, most network studies assumed a Poisson de-

gree distribution of random graphs and failed to reproduce many intriguing phe-

nomena present in various complex systems. However, the heterogeneity of the

scale-free property, often combined with the small-world property that the char-

acteristic path length of the network scales with the logarithm of the number of

nodes, allows descriptions of rich and diverse structural and dynamical characteris-

tics of complex networks, such as robustness, epidemic spreading, and synchronisa-

tion [AB02, New03, BLM+06, LNR17, New18].

Although network representations have largely succeeded and thrived as effec-

1In this work, we use the term ‘network’ and ‘graph’ interchangeably. Similarly, we also use
‘nodes’ and ‘vertices’, ‘links’, and ‘edges’ interchangeably.
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CHAPTER 1. INTRODUCTION 7

tive ways of studying various complex systems, it was clear by the early 2010s that

single-layer networks are not optimal for some systems with more than one type

of interaction [Bia18]. For example, a power grid consists of a physical network of

electric cables connecting power plants and houses and a wireless network of con-

trol units of the power plants that regulate the amount of electricity generated. In

this case, the bi-layer representation with one layer representing the transmission

network and another representing the control network seems more suitable, and in

fact, is used to analyse the devastating blackout in Italy in 2003 [PM13]. To address

this limitation of the single-layer representation, multi-layer networks have become

a frequently used generalisation of networks. In the past decade, comprehensive

studies have been conducted and a wide range of structural and dynamic character-

istics, such as cascades, epidemic spread, and opinion dynamics, are well understood

within the multi-layer network framework [BBC+14, KAB+14, Bia18]. In addition

to multi-layer networks, various extensions, including temporal networks, weighed

and directed networks, and spatial networks, have been actively studied over the last

decade [ML16, HS19, New18].

Nearly 25 years of research on complex networks has advanced our understand-

ing of the structural or dynamic features of diverse complex systems, but there exist

many phenomena that still cannot be well described within the conventional frame-

works. For example, explosive transitions in networks have been reported in various

dynamics, and models with such transitions have been developed and studied in-

tensively [DGGNA19], but these models incorporate very arbitrary and seemingly

unnatural rules in their models [BAB+21]. To explain phenomena that are unnatural

to describe conventionally or those that cannot be explained at all by conventional

representations, the description as networks incorporating higher-order interactions

consisting of three or more nodes, i.e., higher-order networks representation, has

attracted much attention in recent years [BCI+20, BAB+21, Bia21].

In higher-order networks, interactions of three or more elements are described,

for example, by hyperedges or simplicial complexes. Only a few years have passed

since these description methods have become popular, but rapid progress has been

made in understanding the structure and dynamics in the presence of higher-order
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interactions [BCI+20, BAB+21, Bia21]. In particular, the explosive transitions on

the network mentioned earlier appear simply by introducing three-body interactions,

without any additional unnatural rules [BAB+21]. Exploring complex systems as

higher-order networks is promising because it is likely to provide a new framework

for understanding structural and dynamic phenomena of networked systems.

It is, however, essential to note that there are many types of higher-order interac-

tions, even if they are simply referred to as higher-order interactions. For example,

in a coauthorship relationship between three researchers, there can be a relationship

in which three researchers with close competence contribute equally (as in an equi-

lateral triangle), a relationship in which the power balance among three is uneven

(e.g., a student, a postdoc, and a supervisor), and a (directed) relationship in which

a third person gets involved in the joint research of two researchers later in the form

of advice and criticism. When describing a system as a higher-order network, it is

necessary to apply an appropriate representation in accordance with the nature of

the system.

This work considers a triadic interaction in which a third node interacts with the

interaction between the two other nodes, as in the third case of the previous coau-

thorship examples. Such interactions are known, for example, in neuronal networks

in the brain, where the synapses that fire between two neurones are inhibited or

activated by another neural cell, called glia [CBL16]. As another example, there are

reports that a third species interferes with an interaction between two other species

in ecosystems [BKK16, GBMSA17, LS19]. While reports of triadic interactions exist

in real systems, a general framework to describe triadic interactions is new and has

yet to be fully developed and understood. In 2023, Sun et al. considered the percola-

tion problem of networks in the presence of signed triadic interactions and reported

that chaotic behaviours of the giant component size emerge [SRKB23]. Their find-

ings hint that many more interesting phenomena can arise from triadic interactions.

However, there is currently no comprehensive, general study examining how triadic

interactions affect node dynamics on the network. Understanding how triadic inter-

actions affect the node dynamics of a network would be of importance, for example,

in order to examine whether it is possible to detect the existence of previously un-
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explored triadic interactions in multivariate timeseries data of node dynamics that

have been measured from real systems.

In this study, a model of node dynamics on the network in the presence of triadic

interactions is devised, and the relationship between the triadic interactions and the

time evolution of node states in the dynamics is examined. The model is designed in

a way that one can switch the triadic interaction on and off. In particular, we solve

the stationary solution in the absence of triadic interactions analytically and then

attempt to clarify how the presence of triadic interactions affects the node dynamics

by comparing the numerical results with triadic interactions with the analytical result

without triadic interactions. By specifically considering the dynamics in the simple

network structures with three nodes that serve as the basic subgraph structures

of any network with triadic interactions, we evaluate how and to what extent the

triadic interactions on the three types of unit structures appear in the node dynamics.

To this end, we propose conditional correlation coefficients as a measure to show the

existence of triadic interactions, and we demonstrate from the examples that the signs

and magnitude of triadic interactions can be detected from conditional correlation

coefficients.

Finally, the structure of this dissertation is as follows: in Chap. 2, the mathemat-

ical facts used in the model and the analytical calculations are briefly summarised.

In particular, the definition and properties of the multivariate Gaussian distribution

are provided, followed by a summary of stochastic differential equations and their

equivalence to the Fokker-Planck equations. In Chap. 3, the triadic interactions and

the node dynamics incorporating triadic interactions are defined. Chapter 4 sum-

marises the analytical and numerical results of the node dynamics model. Finally,

Chap. 5 presents the conclusions.



Chapter 2

Background

Here we briefly introduce some mathematical preliminaries that will be used in later

chapters. We start by presenting the definitions of networks and graph Laplacian in

Sect. 2.1. Section 2.2 introduces the multivariate Gaussian distribution and some of

its properties which we use in Chap. 4. Next, we discuss in Sect. 2.3 stochastic differ-

ential equations (SDEs) and show their equivalence to the Fokker-Planck equations

(FPEs).

2.1 Networks and Graph Laplacian

We briefly introduce the definitions of networks and graph Laplacians, which will

appear in our model of node dynamics defined in Chap. 3. For details, refer to

standard textbooks or reviews on complex networks (or graph theory), such as [AB02,

New03, LNR17, New18].

Definition 2.1.1. (undirected network; [New18]) Let V be a (nonempty) set of

distinct elements, and let E be a set of distinct unordered pairs of elements in V .
Then, the undirected network (or graph) is defined by the ordered pair (V , E). The
sets V and E are called the set of nodes (or vertices) and the set of links (or edges),

respectively.
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Definition 2.1.2. (adjacency matrix; [New18]) The adjacency matrix A of network

G = (V , E) with |V| = N nodes is an N × N matrix whose (i, j)-th entry (i, j ∈
{1, . . . , N}) is defined by

Aij =

1 if [i, j] ∈ E ,

0 otherwise.
(2.1.1)

Definition 2.1.3. (incidence matrix; [New18]) Let G = (V , E) be a network with

|V| = N nodes and |E| = L links. The incidence matrix B of G is then defined by

the N ×L matrix whose (i, ℓ)-th entry (i ∈ {1, . . . , N}, ℓ ∈ {1, . . . , L}) is defined by

Biℓ =


−1 if ℓ = [i, j] and i < j,

1 if ℓ = [j, i] and j < i,

0 otherwise.

(2.1.2)

Definition 2.1.4. (graph Laplacian; [New18]) Let G = (V , E) be a network with

|V| = N nodes. The graph Laplacian L of G is an N × N matrix whose (i, j)-th

entry (i, j ∈ {1, . . . , N}) is defined by

Lij =
(
BB⊤)

ij
=


∑N

k=1 Aik if i = j,

−1 if i ̸= j and [i, j] ∈ E ,

0 otherwise,

(2.1.3)

where B is the incidence matrix of G and Aij is the (i, j)-th entry of the adjacency

matrix A of G.

2.2 Multivariate Gaussian Distributions

Later in this work, we will deal with multivariate Gaussian distributions and will

utilise some of their properties. We briefly review its definition and key properties.

These are kept intentionally short; please refer to [Ton90, BN06, Hau16] for more
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details.

2.2.1 Definition

Let us first formally define the multivariate Gaussian distribution (or multivariate

normal distribution).

Definition 2.2.1. (Multivariate Gaussian Distribution; [Ton90]) Let X ∈ Rn be an

n-dimensional random variable (where n ∈ N). Then, X is said to follow the n-

dimensional Gaussian distribution with mean vector µ ∈ Rn and covariance matrix

Σ ∈ Rn×n if Σ is positive definite1 and the joint probability density function fX of

X is given by

fX (x;µ,Σ) =
1√

(2π)n|Σ|
exp

[
−1

2
(x− µ)⊤Σ−1(x− µ)

]
, x ∈ Rn (2.2.1)

where |Σ| denotes the determinant of the covariance matrix Σ. The random variable

X is indicated by X ∼ Nn(µ,Σ), or X ∼ N (µ,Σ) if n is obvious. The probability

density function fX of X ∼ Nn(µ,Σ) is denoted as Nn(X;µ,Σ). The moment

generating function of Nn(µ,Σ) is defined as [Hau16]

MX (t̃) = exp

[
t̃
⊤
µ+

1

2
t̃
⊤
Σt̃

]
. (2.2.2)

2.2.2 Properties

In the following subsections, we present a short list of important properties of mul-

tivariate Gaussian distribution that we shall use later.

2.2.2.1 Linear Transformation Theorem

Here we state and prove the linear transformation theorem which we use to derive

the marginal and conditional probabilities for multivariate Gaussian distributions.

1By the definition of the covariance matrix Σ, it is either positive definite or positive semi-
definite. For simplicity, we limit our arguments to the cases in which Σ is positive definite through-
out this work.
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Theorem 2.2.1. (linear transformation theorem; [Ton90]) Let X ∈ Rn be a random

variable from a multivariate Gaussian distribution N (µ,Σ), and let Y ∈ Rm be a

linear transformation of X with

Y = AX + b, (2.2.3)

where A ∈ Rm×n and b ∈ Rm are constant matrices. Then the random variable Y

follows a multivariate Gaussian distribution N (Aµ+ b,AΣA⊤).

Proof. [Soc20] Consider the moment generating function of Y ,

MY (t) = E
[
exp{t⊤Y }

]
= E

[
exp{t⊤AX}

]
E
[
exp{t⊤b}

]
= MX (A⊤t) exp

[
t⊤b
]
, (2.2.4)

where t ∈ Rm. Since the moment generating function of X ∼ N (µ,Σ) is given as

Eq. (2.2.2), we can further rewrite MY (t) in Eq. (2.2.4) as

MY (t) = exp

[
t⊤Aµ+

1

2
t⊤AΣA⊤t

]
exp

[
t⊤b
]

= exp

[
t⊤(Aµ+ b) +

1

2
t⊤AΣA⊤t

]
. (2.2.5)

Therefore, Y follows the Gaussian distribution with mean vector Aµ+b and covari-

ance matrix AΣA⊤.

2.2.2.2 Marginal Distribution

Theorem 2.2.2. (Marginal distribution; [Ton90]) Let X ∈ Rn be a random variable

from multivariate Gaussian distribution Nn(µ,Σ). Let S be a subset of the indices

of X and denote s = |S|. Define a subset vector XS such that XS = HX, where H

is an s× n matrix that maps the indices of X onto the indices of the subset vector
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XS, i.e.,

Hij =

1 if (Xs)i = Xj,

0 otherwise.
(2.2.6)

Then, the marginal distribution of subset vector XS follows Ns(Hµ,HΣH⊤).

Proof. Since H is a linear transformation, it follows directly from Theorem 2.2.1.

2.2.2.3 Conditional Distribution

Theorem 2.2.3. (Conditional distribution; [Ton90]) Let X ∈ Rn be a random

variable from multivariate Gaussian distribution Nn(µ,Σ). For k < n, consider

partions of X, µ, and Σ such that

X =

(
X1

X2

)
, µ =

(
µ1

µ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
, (2.2.7)

where

X1 =
(
X1 X2 · · · Xk

)⊤
, X2 =

(
Xk+1 Xk+2 · · · Xn

)⊤
,

µ1 =
(
µ1 µ2 · · · µk

)⊤
, µ2 =

(
µk+1 µk+2 · · · µn

)⊤
.

(2.2.8)

Then, the conditional distributions of X1 given X2 = x2 is multivariate Gaussian

Nk(µ1·2,Σ11·2), where

µ1·2 = µ1 +Σ12Σ
−1
22 (x2 − µ2), (2.2.9)

Σ11·2 = Σ11 −Σ12Σ
−1
22 Σ21. (2.2.10)

Proof. The proof is omitted due to space constraints, but it can be found in Sect.

3.3.3 of [Ton90].
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2.3 Stochastic Differential Equations and Fokker-

Planck Equations

A stochastic differential equation (SDE) [Gar09, Oks13] takes the form:

dx(t) = a[t, x(t)]dt+ b[t, x(t)]dW (t), (2.3.1)

where dW (t) is the differential form of the univariate standard Brownian motion.

Similarly, a multivariate stochastic differential equation of X(t) ∈ Rn takes the

form:

dX(t) = A[t,X(t)]dt+B[t,X(t)]dW (t), (2.3.2)

where dW (t) is the differential form of the n-dimensional standard Brownian motion

and A ∈ Rn and B ∈ Rn×n are coefficients.

Meanwhile, a Fokker-Planck equation (FPE) [RR96, Gar09] is a partial differen-

tial equation for probability density function p(t, x) of random variable X. It takes

the form:

∂p(t, x)

∂t
= − ∂

∂x
[µ(t, x)p(t, x)] +

∂2

∂x2
[D(t, x)p(t, x)] . (2.3.3)

The multivariate version of an FPE is expressed as:

∂p(t,X)

∂t
= −

n∑
i=1

∂

∂Xi

[µi(t,X)p(t,X)] +
1

2

n∑
i=1

n∑
j=1

∂

∂Xi

∂

∂Xj

[Dij(t,X)p(t,X)] ,

(2.3.4)

where X ∈ Rn is an n-dimensional vector.

In the following section, we define Itô’s formula, which we apply to show the

equivalence of SDEs and FPEs.
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2.3.1 Itô’s Formula

In order to show that SDEs of the form (2.3.1) are equivalent to the Fokker-Planck

equations, we shall introduce Itô’s formula.

Theorem 2.3.1. (multivariate Itô’s formula; [Gar09])

df [X(t)] =

{∑
i

Ai[t,X(t)]
∂

∂Xi

f [X(t)]

+
1

2

∑
i,j

(
B[t, x(t)]B⊤[t,X(t)]

)
ij

∂

∂Xi

∂

∂Xj

f [X(t)]

}
dt

+
∑
i,j

Bij[t,X(t)]
∂

∂Xi

f [X(t)]dWi(t)

(2.3.5)

Proof. (sketch; [Gar09]) Let f be an arbitrary twice-differentiable function of X(t).

By the Taylor expansion of df [X(t)],

df [X(t)] =
∂

∂t
f [X(t)]dt+ (∇f [X(t)])⊤ dX(t) +

1

2
(dX(t))⊤ (Hf) (dX(t)) ,

(2.3.6)
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where H(f) is the Hessian matrix of the function f . Assuming
∂

∂t
f [X(t)] = 0, and

substituting Eq.(2.3.2) into Eq. (2.3.6), it follows that

df [X(t)] = (∇f [X(t)])⊤ {A[t,X(t)]dt+B[t,X(t)]dW (t)}

+
1

2
{A[t,X(t)]dt+B[t,X(t)]dW (t)}⊤

× (Hf) {A[t,X(t)]dt+B[t,X(t)]dW (t)}

=
∑
i

Ai[t,X(t)]
∂

∂Xi

f [X(t)]dt+
∑
i,j

Bij[t,X(t)]dWj(t)
∂

∂Xi

f [X(t)]dt

+
1

2

∑
i,j

(
Ai[t,X(t)]dt+

∑
k

Bki[t,X(t)]dWk(t)

)

× ∂2f [X(t)]

∂Xi∂Xj

(
Aj[t,X(t)]dt+

∑
k

Bjk[t,X(t)]dWk(t)

)
.

(2.3.7)

The right hand side of Eq. (2.3.7) further simplifies to

df [X(t)] =
∑
i

Ai[t,X(t)]
∂

∂Xi

f [X(t)]dt+
∑
i,j

Bij[t,X(t)]dWj(t)
∂

∂Xi

f [X(t)]dt

+
1

2

∑
i,j

{
Ai[t,X(t)]Aj[t,X(t)]dt2

+ Ai[t,X(t)]
∑
k

Bki[t,X(t)]dWk(t)dt

+ Aj[t,X(t)]dt
∑
k

Bjk[t,X(t)]dWk(t)dt

+
∑
k

Bik[t,X(t)]Bkj[t,X(t)]dWi(t)dWj(t)

}
∂2f

∂Xi∂Xj

.

(2.3.8)
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Using the relations dt2 → 0, dtdWi(t) → 0 and dW 2
i (t) → dt as t → ∞ by the

properties of multivariate Brownian motions[Gar09, Oks13], we arrive at

df [X(t)] =
∑
i

Ai[t,X(t)]
∂

∂Xi

f [X(t)]dt+
∑
i,j

Bij[t,X(t)]dWj(t)
∂

∂Xi

f [X(t)]dt

+
1

2

∑
i,j

(
B[t,X(t)]B⊤[t,X(t)]

)
ij

∂

∂Xi

∂

∂Xj

f [X(t)]dt

=

{∑
i

Ai[t,X(t)]
∂

∂Xi

f [X(t)]

+
1

2

∑
i,j

(
B[t,X(t)]B⊤[t,X(t)]

)
ij

∂

∂Xi

∂

∂Xj

f [X(t)]

}
dt

+
∑
i,j

Bij[t,X(t)]
∂

∂Xi

f [X(t)]dWi(t). (2.3.9)

Thus, we derived the multivariate Itô’s formula (2.3.5).

2.3.2 Equivalence to Fokker-Planck Equation

Here we present the proof sketch from [Gar09] to show the equivalence of SDEs of the

form (2.3.2) and FPEs of the form (2.3.4). Let f be an arbitrary twice-differentiable

function of X. From the multivariate Itô’s formula (2.3.5), the time derivative of

f(X(t)) is given by

∂f(X)

∂t
=
∑
i

Ai(t,X)
∂

∂Xi

f(X) +
1

2

∑
i,j

(
B(t,X)B⊤(t,X)

)
ij

∂

∂Xi

∂

∂Xj

f(X).

(2.3.10)

The time derivative of the expectation value of f(X) over X reads

∂

∂t
⟨f(X)⟩ = ∂

∂t

∫
f(X)

[
p(t,X | t0,X0)

]
dX

=

∫
f(X)

∂

∂t

[
p(t,X | t0,X0)

]
dX, (2.3.11)
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as we can swap the order of the space integration and the time derivative.

The space average of the right hand side of Eq. (2.3.10) reads〈∑
i

Ai(t,X)
∂

∂Xi

f(X) +
1

2

∑
i,j

(
B(t,X)B⊤(t,X)

)
ij

∂

∂Xi

∂

∂Xj

f(X)

〉

=

∫
dX

{∑
i

Ai(t,X)
∂

∂Xi

f(X)

+
1

2

∑
i,j

(
B(t,X)B⊤(t,X)

)
ij

∂

∂Xi

∂

∂Xj

f(X)

}
p(t,X(t) | t0,X0)

(2.3.12)

Integrating by parts, it follows that〈∑
i

Ai(t,X)
∂

∂Xi

f(X) +
1

2

∑
i,j

(
B(t,X)B⊤(t,X)

)
ij

∂

∂Xi

∂

∂Xj

f(X)

〉

= −

∫
dXf(X)

∑
i

∂

∂Xi

[
Ai(t,X)p(t,X(t) | t0,X0)

]
+

1

2

∫
dXf(X)

∑
i,j

∂

∂Xi

∂

∂Xj

[(
B(t,X)B⊤(t,X)

)
ij
p(t,X(t) | t0,X0)

]
,

(2.3.13)

which further simplifies to〈∑
i

Ai(t,X)
∂

∂Xi

f(X) +
1

2

∑
i,j

(
B(t,X)B⊤(t,X)

)
ij

∂

∂Xi

∂

∂Xj

f(X)

〉

=

∫
dXf(X)

{
−
∑
i

∂

∂Xi

[
Ai(t,X)p(t,X(t) | t0,X0)

]
+
1

2

∑
i,j

∂

∂Xi

∂

∂Xj

[(
B(t,X)B⊤(t,X)

)
ij
p(t,X(t) | t0,X0)

]}
.

(2.3.14)
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From Eqs. (2.3.11) and (2.3.13), we obtain

∂

∂t
p(t,X(t) | t0,X0) = −

∑
i

∂

∂Xi

[
Ai(t,X)p(t,X(t) | t0,X0)

]
+

1

2

∑
i,j

∂

∂Xi

∂

∂Xj

[(
B(t,X)B⊤(t,X)

)
ij
p(t,X(t) | t0,X0)

]
.

(2.3.15)

Therefore, we have shown that the multi-dimensional stochastic differential equation

is equivalent to the multi-dimensional Fokker-Planck equation.

2.3.3 Example: Ornstein Uhlenbeck Process

The stochastic differential equation for the n-dimensional Ornstein-Uhlenbeck pro-

cess is as follows [Gar09]:

dX = −KX(t)dt+ ΓdW (t), (2.3.16)

where K ∈ Rn×n and Γ ∈ Rn×n are constant matrices. The solution of Eq. (2.3.16)

can be expressed as

X(t) = X(t0)−K

∫ t

t0

X(t′)dt′ + Γ

∫ t

t0

dW (t′), (2.3.17)

where the second integral is the multi-dimensional Itô integral. From Eq. (2.3.15),

the equivalent Fokker-Planck equaiton is as follows:

∂

∂t
p(t,X(t) | t0,X0) = −

∑
i

∂

∂Xi

[
(KX)i p(t,X(t) | t0,X0)

]
+

1

2

∑
i,j

∂

∂Xi

∂

∂Xj

[(
ΓΓ⊤

)
ij
p(t,X(t) | t0,X0)

]
.

(2.3.18)

At the equilibrium, the time-derivative of the conditionary probability pst(X |
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t0,X0) is zero, i.e.

0 = −
∑
i

∂

∂Xi

[
−(KX)i pst(X | t0,X0)

]
+

1

2

∑
i,j

∂

∂Xi

∂

∂Xj

[(
ΓΓ⊤

)
ij
pst(X | t0,X0)

]
=
∑
i

∂

∂Xi

{
−(KX)i pst(X | t0,X0)

+
1

2

∑
j

∂

∂Xj

[(
ΓΓ⊤

)
ij
pst(X | t0,X0)

]}
.

(2.3.19)

Using the results presented in [Gar09, VP19], we obtain from Eq. (2.3.19) the sta-

tionary solution

pst(X | t0,X0) =
1√

(2π)n|Σ|
exp

[
−1

2
X⊤Σ−1X

]
, (2.3.20)

where Σ is obtained by

KΣ+ΣK⊤ = ΓΓ⊤. (2.3.21)

For the details of this derivation, please refer to [Gar09, VP19]. Note that the

stationary solution is a multivariate Gaussian distribution with mean vector 0 and

covariance matrix Σ.



Chapter 3

Model

In this chapter, we define our model of the node dynamics on networks with triadic

interactions. We first define the triadic interaction and then present the model of

node dynamics on networks with triadic interactions. Finally, we show the three

basic motifs, which we discuss in Chap. 4.

3.1 Triadic Interaction

Here, we define triadic interactions that we consider in this work.

Definition 3.1.1. (triadic interaction)

Let G be a simple network with a set V of N = |V| nodes and a set E of L = |E| links.
Let i ∈ V and ℓ ∈ E . Then, the triadic interaction Kℓi is the interaction between

node i and link ℓ, and is defined as follows:

Kℓi =


−1 if node i inhibits the interaction represented by link ℓ,

1 if node i activates the interaction represented by link ℓ,

0 otherwise.

(3.1.1)

IfKℓi = 1, then node i is called a positive regulator of link ℓ. IfKℓi = −1, then node i

is called a negative regulator of link ℓ. Finally, the matrix K ∈ {−1, 0, 1}L×N , whose

22
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(ℓ, i)-entry is given by Kℓi, is called the incidence matrix of the triadic interactions

in G.

Remark. Note that node i ∈ V of graph G = (V , E) cannot be both positive and

negative regulators of link ℓ simultaneously, but node i can be a positive regulator

of link ℓ and a negative regulator of another link ℓ′ (ℓ′ ̸= ℓ).

3.2 Node Dynamics

Using the formalism of triadic interactions defined in Sec. 3.1, we consider the fol-

lowing node dynamics of networks with triadic interactions.

Definition 3.2.1. (node dynamics of networks with triadic interactions).

Let G be a simple network with a set V of nodes and a set E of links. Denote N = |V|
and L = |E|. Let K ∈ RL×N be the incidence matrix of the triadic interactions in G.

Suppose that each node i ∈ V possesses node state Xi ∈ R and that the state vector

X ∈ RN is governed by the stochastic differential equation of the form

dX = −(L(T) + αI)Xdt+ ΓdW t, (3.2.1)

where α ∈ R+, γi ∈ R+ is the i-th diagonal entry of diagonal matrix Γ, and dW t

is the N -dimensional standard Brownian motion. The matrix L(T) ∈ RN×N is the

triadic Laplacian whose entries are given by

L
(T )
ij =


−Jij(X) if i ̸= j,

N∑
k=1

Jik(X) if i = j,
(3.2.2)
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where the matrix J is defined as

Jij(X) =


w+θ

(
N∑
k=1

KℓkXk − T̂

)
+ w−θ

(
T̂ −

N∑
k=1

KℓkXk

)
if ℓ = [i, j] ∈ E ,

0 if ℓ = [i, j] /∈ E .
(3.2.3)

Here, w+, w− ∈ R+ (w+ > w−) are respectively the strength parameters of positive

and negative triadic interactions, T̂ ∈ R is the threshold parameter, and θ(·) is the
Heaviside function.

Remark. Note the following:

• Jij(X) = w+ if the sum of node states of nodes regulating link [i, j] via triadic

interactions is greater than the threshold T̂ , while Jij(X) = w− if the sum of node

states of nodes regulating link [i, j] via triadic interactions is less than T̂ .

• The triadic Laplacian L(T) can be expressed in terms of the incidence matrix

B ∈ RN×L of the structural network G as

L(T) = BWB⊤, (3.2.4)

whereW ∈ RL×L denotes the diagonal matrix whose diagonal elements areW[i,j],[i,j] =

Jij(X).

3.3 Examples: 3 Basic Motifs

Although our model of node dynamics is quite general, we consider, for simplicity,

the network motifs with triadic interactions shown in Fig. 3.3.1. This is because any

triadic interaction in larger networks is, in principle, decomposable into the three

motif structures since triadic interactions in larger networks are the superposition of

the three. The graph Laplacians La, Lb, and Lc of the three motif structures are
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X1(t)

X2(t) X3(t)

X1(t)

X2(t) X3(t)

X1(t)

X2(t) X3(t)

(a) Ga with Ka (b) Gb with Kb (c) Gc with Kc

Figure 3.3.1: Three network motifs with triadic interactions. In each network, the
red arrow indicates the triadic interaction.

given by

La =

0 0 0

0 1 −1

0 −1 1

 , Lb =

 1 −1 0

−1 2 −1

0 −1 1

 , Lc =

 2 −1 −1

−1 2 −1

−1 −1 2

 . (3.3.1)

The incidence matrix of the triadic interactions in the three motifs shown in Fig. 3.3.1

are as follows:

motif (a): K±
a =

(
±1 0 0

)
, (3.3.2)

motif (b): K±
b =

(
0 0 0

±1 0 0

)
, (3.3.3)

motif (c): K±
c =

 0 0 0

0 0 0

±1 0 0

 , (3.3.4)

where ± indicates the signs of triadic interactions.
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Results

In this chapter, we present the analytical and numerical results for the node dynamics

on networks with and without triadic interactions. In Sect. 4.1, we report the analyt-

ical results on the stationary node state distributions, covariances, and conditional

correlations in the absence of triadic interactions. We first show the general results,

and then present the examples from the three motifs structures from Sec. 3.3. These

analytical results are confirmed by numerical simulations. In Sect. 4.2, we present

the numerical results on the stationary node state distributions, covariances, and

conditional correlations in the presence of triadic interactions. By comparing the

results in the absence and presence of triadic interactions, we discuss the effects of

triadic interactions on the node dynamics. We conclude in Sect. 4.3 by summarising

the results and discussing the implications of the results.

4.1 In the Absence of Triadic Interactions

Before we begin our numerical investigations into the effects of triadic interactions

on the node dynamics, it is instructive first to consider the case where triadic in-

teractions are absent and then use these results to identify the effects of triadic

interactions on the node dynamics. For this purpose, we present the analytical re-

sults on the stationary node state distributions, covariance matrix, and conditional

26
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correlations without triadic interactions. As we shall see, the analytical results in the

absence of triadic interactions are very useful in understanding the effects of triadic

interactions, since the analytical results are quite simple and intuitive. The natures

of the analytical results enable us to identify the effects of triadic interactions when

we introduce them.

Let G = (V , E) be a structural network consisting of node set V and link set E .
The node dynamics of the form (3.2.1) is exactly solvable in the absence of triadic

interactions, i.e., if Kℓi = 0 for ∀ℓ ∈ E , i ∈ V . In fact, the stationary distribution pst

of node states X is an N -dimensional centred Gaussian distribution

pst(X) =
1√

(2π)N |Σ|
exp

[
−1

2
X⊤Σ−1X

]
, (4.1.1)

with mean vector

X = 0 (4.1.2)

and covariance matrix

Σ =
γ2

2
(w−L+ αI)−1 . (4.1.3)

For interested readers, the derivation of the stationary distribution (4.1.1) is pre-

sented in Appendix A.

In order to characterise the triadic interactions, we compute the conditional cor-

relation coefficients introduced by [Mau16].

Definition 4.1.1. (conditional correlation coefficient; [Mau16]) Let X and Y be

random variables defined in the probability space (Ω,F , P ) and A ∈ F such that

P (A) > 0. The conditional (Pearson) correlation coefficient ρ(X, Y |A) is then de-

fined by

ρ(X, Y |A) =
E [(X − E [X|A])(Y − E [Y |A])|A]√

E [(X − E [X|A])2|A]E [(Y − E [Y |A])2|A]
, (4.1.4)
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where 0 ≤ ρ(X, Y |A) ≤ 1.

From the definition (4.1.4) and Theorem 2.2.2 and 2.2.3, we can show that the

conditional correlation coefficient in our node dynamics is given as

ρ(Xi, Xj | Xk = x̃) =
Σij − Σ−1

kkΣikΣkj√
(Σii − Σ−1

kkΣikΣki)(Σjj − Σ−1
kkΣjkΣkj)

, x̃ ∈ R. (4.1.5)

The details of its derivation are shown in Appendix B. For convenience of notation,

we sometimes denote it as ρij|k(x̃). The conditional correlation coefficient in our node

dynamics is independent of the values of the conditional variable Xk, if there are no

triadic interactions in the network.

As mentioned in Sect. 3.3, we consider the effect of triadic interactions in the node

dynamics on the three motifs shown in Fig. 3.3.1. Therefore, here we present the an-

alytical forms of the stationary node state distribution, covariances, and conditional

correlation coefficients for the three motifs in the absence of triadic interactions.

For motif Ga in Fig. 3.3.1(a) but without the triadic interaction indicated by the

red arrow, we obtain the covariance matrix Σa of Ga as

Σa =
γ2

2α(α + 2w−)

α + 2w− 0 0

0 α + w− w−

0 w− α + w−

 , (4.1.6)

from Eq. (4.1.3). Figure 4.1.1 shows the close agreement between the theoretical

values of the covariances in Eq. (4.1.6) and the numerically computed covariances

from 103 realisations of the node dynamics on motif (a).
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Figure 4.1.1: The covariance matrix Σa of the network Ga without triadic interac-
tions. The simulations are run with parameters w− = 1, w+ = 2, α = 1, T̂ = 10−3,
γ = 10−2, dt = 10−2, and Tmax = 100. The ticks on the horizontal axis represent the
entries in the covariance matrix. The distributions of numerically computed covari-
ances from 103 realisations (with time range [Tmax/2, Tmax]) are shown as box plots
with the median (black line) and the mean (white circle). The colour-filled curves
are the kernel density estimates of the distributions. The red crosses indicate the
theoretical values of the covariances in Eq. (4.1.6).

From Eq. (4.1.1), the stationary solution of the joint PDF of node states in Ga is

pst123(X1, X2, X3)

= N3 (X1, X2, X3; 0,Σa)

=

(
1

πγ2

) 3
2 √

α2(α + 2w−)

× exp

[
− 1

γ2

{
αX2

1 + (α + w−)(X
2
2 +X2

3 )− 2w−X2X3

}]
.

(4.1.7)
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Figure 4.1.2: Stationary node state distribution of motif Ga without triadic inter-
actions. The simulations are conducted with parameter values w− = 1, w+ = 2,
α = 1, T̂ = 10−3, γ = 10−2, dt = 10−2, and Tmax = 100. The black dashed lines are
the theoretical PDFs given by Eqs. (4.1.8)–(4.1.10), and the red open circles are the
empirical marginal PDFs obtained from 103 realisations of the simulations. For each
realisation, we extracted data from time range [Tmax/2, Tmax]. Empirical PDFs are
obtained by binning the data points into 50 bins.

By applying Theorem 2.2.2, we derive the marginal PDFs of X1, X2, and X3 as

pst1 (X1) = N1 (0, (Σa)11) =

√
α

πγ2
exp

[
− α

γ2
X2

1

]
, (4.1.8)

pst2 (X2) = N1 (X2; 0, (Σa)22) =

√
α(α + 2w−)

πγ2(α + w−)
exp

[
− 1

γ2

α(α + 2w−)

α + w−
X2

2

]
, (4.1.9)

pst3 (X3) = N1 (X3; 0, (Σa)33) =

√
α(α + 2w−)

πγ2(α + w−)
exp

[
− 1

γ2

α(α + 2w−)

α + w−
X2

3

]
, (4.1.10)

where (Σa)ij denotes the (i, j)-th entry of the covariance matrixΣa. Equations (4.1.8)–

(4.1.10) are confirmed by numerical simulations as shown in Fig. 4.1.2.

From Eqs. (4.1.6) and (4.1.5), the conditional correlations conditioned on X1 = x̃,
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Figure 4.1.3: Conditional correlation coefficients in motif Ga without triadic inter-
actions. The simulation parameters are set to w− = 1, w+ = 2, α = 1, T̂ = 10−3,
γ = 10−2, dt = 10−2, and Tmax = 100. The black dashed line is the theoretical
conditional correlation given by Eq. (4.1.5), and the red open circles are the empiri-
cal conditional correlations obtained from 103 realisations of the simulations, where
we extracted data points from time range [Tmax/2, Tmax]. Empirical conditional cor-
relations are obtained by binning the data points into 50 bins. Due to the small
sample size, the empirical conditional correlations fluctuate at both ends of the con-
ditional variable, and thus we restrict the plotting range to [−3σk, 3σk], where σk

(k ∈ {1, 2, 3}) is the standard deviation of the conditional variable Xk.

X2 = x̃, X3 = x̃ are respectively

ρ23|1 ≡ ρ(X2, X3 | X1 = x̃) =
w−

α + w−
, (4.1.11)

ρ13|2 ≡ ρ(X1, X3 | X2 = x̃) = 0, (4.1.12)

ρ12|3 ≡ ρ(X1, X2 | X3 = x̃) = 0. (4.1.13)

Figure 4.1.3 visualises the conditional correlations ρ23|1(X1), ρ13|2(X2), and ρ12|3(X3)

from Eqs. (4.1.11)–(4.1.13) and the numerical values from 103 simulations of the node

dynamics. The analytical and numerical results align mostly well, but we observe

large fluctuations at both ends of the conditional variable. They are caused by the

small sample sizes at both ends.

Next, for motif Gb in Fig. 3.3.1(b) without triadic interactions, the covariance
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Figure 4.1.4: The covariance matrix Σb of the network Gb without triadic interac-
tions. The simulations are run with parameters w− = 1, w+ = 2, α = 1, T̂ = 10−3,
γ = 10−2, dt = 10−2, and Tmax = 100. The ticks on the horizontal axis represent the
entries in the covariance matrix. The distributions of numerically computed covari-
ances from 103 realisations (with time range [Tmax/2, Tmax]) are shown as box plots
with the median (black line) and the mean (white circle). The colour-filled curves
are the kernel density estimates of the distributions. The red crosses indicate the
theoretical values of the covariances in Eq. (4.1.14).

matrix Σb of Gb reads

Σb =
γ2

2α(α + w−)(α + 3w−)

×

α2 + 3αw− + w2
− w−(α + w−) w2

−

w−(α + w−) (α + w−)
2 w−(α + w−)

w2
− w−(α + w−) α2 + 3αw− + w2

−

 , (4.1.14)

which follows from Eq. (4.1.3). The analytical form in Eq. (4.1.14) are confirmed by

numerical simulations, as shown in Fig. 4.1.4.

From Eq. (4.1.1) and the covariance matrix in Eq. (4.1.14), the stationary solution
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of the joint PDF of node states in Gb is

pst123(X1, X2, X3) = N3(X1, X2, X3; 0,Σb)

=

(
1

πγ2

) 3
2 √

α(α + w−)(α + 3w−)

× exp

[
− 1

γ2

{
(α + 2w−)X

2
2 + (α + w−)(X

2
1 +X2

3 )− 2w−X2(X1 +X3)
}]

.

(4.1.15)

By applying Theorem 2.2.2, we obtain the marginal PDFs of X1, X2, and X3 as

pst1 (X1) = N1(X1; 0, (Σb)11)

=

√
α(α + w−)(α + 3w−)

πγ2(α2 + 3αw− + w2
−)

exp

[
− 1

γ2

α(α + w−)(α + 3w−)

α2 + 3αw− + w2
−

X2
1

]
, (4.1.16)

pst2 (X2) = N1(X2; 0, (Σb)22)

=

√
α(α + 3w−)

πγ2(α + w−)
exp

[
− 1

γ2

α(α + 3w−)

α + w−
X2

2

]
, (4.1.17)

pst3 (X3) = N1(X3; 0, (Σb)33)

=

√
α(α + w−)(α + 3w−)

πγ2(α2 + 3αw− + w2
−)

exp

[
− 1

γ2

α(α + w−)(α + 3w−)

α2 + 3αw− + w2
−

X2
3

]
. (4.1.18)

where (Σb)ij denotes the (i, j)-th entry of the covariance matrixΣb. Equations (4.1.16)–

(4.1.18) align with numerical simulations, as shown in Fig. 4.1.5.

From Eqs. (4.1.14) and (4.1.5), the conditional correlation coefficients conditioned

on X1 = x̃, X2 = x̃, X3 = x̃ are respectively

ρ23|1 ≡ ρ(X2, X3 | X1 = x̃) =
w−√

(α + w−)(α + 2w−)
, (4.1.19)

ρ13|2 ≡ ρ(X1, X3 | X2 = x̃) = 0, (4.1.20)

ρ12|3 ≡ ρ(X1, X2 | X3 = x̃) =
w−√

(α + w−)(α + 2w−)
. (4.1.21)
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Figure 4.1.5: Stationary node state distribution of motif Gb without triadic interac-
tions. The simulations are conducted with parameter values w− = 1, w+ = 2, α = 1,
T̂ = 10−3, γ = 10−2, dt = 10−2, and Tmax = 100. The black dashed lines are the
theoretical PDFs given by Eqs. (4.1.16)–(4.1.18), and the red open circles are the
empirical marginal PDFs obtained from 103 realisations of the simulations. For each
realisation, we extracted data from time range [Tmax/2, Tmax]. Empirical PDFs are
obtained by binning the data points into 50 bins.

Figure 4.1.6 shows the conditional correlations ρ23|1(X1), ρ13|2(X2), and ρ12|3(X3)

from Eqs. (4.1.19)–(4.1.21) and the numerical values from 103 simulations of the node

dynamics. The analytical and numerical results agree well, except for both ends of

the conditional variables where the number of data points is small.

Finally, for motif Gc in Fig. 3.3.1(c) without triadic interactions, we can derive

from Eq. (4.1.3) that the covariance matrix Σc of Gc is given by

Σc =
γ2

2α(α + 3w−)

α + w− w− w−

w− α + w− w−

w− w− α + w−

 . (4.1.22)

As shown in Fig. 4.1.7, the analytical and numerical results are in agreement, im-

plying that Eq. (4.1.22) is correct.
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Figure 4.1.6: Conditional correlation coefficients in motif Gb without triadic inter-
actions. The simulation parameters are set to w− = 1, w+ = 2, α = 1, T̂ = 10−3,
γ = 10−2, dt = 10−2, and Tmax = 100. The black dashed line is the theoretical
conditional correlation given by Eq. (4.1.5), and the red open circles are the empiri-
cal conditional correlations obtained from 103 realisations of the simulations, where
we extracted data points from time range [Tmax/2, Tmax]. Empirical conditional cor-
relations are obtained by binning the data points into 50 bins. Due to the small
sample size, the empirical conditional correlations fluctuate at both ends of the con-
ditional variable, and thus we restrict the plotting range to [−3σk, 3σk], where σk

(k ∈ {1, 2, 3}) is the standard deviation of the conditional variable Xk.

From Eq. (4.1.1), the stationary solution of the joint PDF of node states in Gc is

pst123(X1, X2, X3) = N3 (X1, X2, X3; 0,Σc)

=

(
1

πγ2

) 3
2 √

α(α + 3w−)2

× exp

[
− 1

γ2

{
(α + 2w−)(X

2
1 +X2

2 +X2
3 )− 2w−(X1X2 +X1X3 +X2X3)

}]
.

(4.1.23)
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Figure 4.1.7: The covariance matrix Σc of the network Gc without triadic interac-
tions. The simulations are run with parameters w− = 1, w+ = 2, α = 1, T̂ = 10−3,
γ = 10−2, dt = 10−2, and Tmax = 100. The ticks on the horizontal axis represent the
entries in the covariance matrix. The distributions of numerically computed covari-
ances from 103 realisations (with time range [Tmax/2, Tmax]) are shown as box plots
with the median (black line) and the mean (white circle). The colour-filled curves
are the kernel density estimates of the distributions. The red crosses indicate the
theoretical values of the covariances in Eq. (4.1.22).

By applying Theorem 2.2.2, we obtain the marginal PDFs of X1, X2, and X3 as

pst1 (X1) = N1 (X1; 0, (Σc)11) =

√
α(α + 3w−)

πγ2(α + w−)
exp

[
− 1

γ2

α(α + 3w−)

α + w−
X2

1

]
, (4.1.24)

pst2 (X2) = N1 (X2; 0, (Σc)22) =

√
α(α + 3w−)

πγ2(α + w−)
exp

[
− 1

γ2

α(α + 3w−)

α + w−
X2

2

]
, (4.1.25)

pst3 (X3) = N1 (X3; 0, (Σc)33) =

√
α(α + 3w−)

πγ2(α + w−)
exp

[
− 1

γ2

α(α + 3w−)

α + w−
X2

3

]
, (4.1.26)

where (Σc)ij denotes the (i, j)-th entry of the covariance matrixΣc. Equations (4.1.22)

and (4.1.24)–(4.1.26) coincide with the numerical results as shown in Fig. 4.1.8.

From Eqs. (4.1.22) and (4.1.5), the conditional correlation coefficients conditioned
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Figure 4.1.8: Stationary node state distribution of motif Gc without triadic interac-
tions. The simulations are conducted with parameter values w− = 1, w+ = 2, α = 1,
T̂ = 10−3, γ = 10−2, dt = 10−2, and Tmax = 100. The black dashed lines are the
theoretical PDFs given by Eqs. (4.1.24)–(4.1.26), and the red open circles are the
empirical marginal PDFs obtained from 103 realisations of the simulations. For each
realisation, we extracted data from time range [Tmax/2, Tmax]. Empirical PDFs are
obtained by binning the data points into 50 bins.

on X1 = x̃, X2 = x̃, X3 = x̃ are respectively

ρ23|1 ≡ ρ(X2, x3 | X1 = x̃) =
w−

α + 2w−
, (4.1.27)

ρ13|2 ≡ ρ(X1, X3 | X2 = x̃) =
w−

α + 2w−
, (4.1.28)

ρ12|3 ≡ ρ(X1, X2 | X3 = x̃) =
w−

α + 2w−
. (4.1.29)

Figure 4.1.9 shows the conditional correlations ρ23|1(X1), ρ13|2(X2), and ρ12|3(X3)

from Eqs. (4.1.11)–(4.1.13) and the numerical values from 103 simulations of the node

dynamics. The analytical and numerical results agree well, except for both ends of

the conditional variables, where the number of data points is small.
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Figure 4.1.9: Conditional correlation coefficients in motif Gc without triadic inter-
actions. The simulation parameters are set to w− = 1, w+ = 2, α = 1, T̂ = 10−3,
γ = 10−2, dt = 10−2, and Tmax = 100. The black dashed line is the theoretical
conditional correlation given by Eq. (4.1.5), and the red open circles are the empiri-
cal conditional correlations obtained from 103 realisations of the simulations, where
we extracted data points from time range [Tmax/2, Tmax]. Empirical conditional cor-
relations are obtained by binning the data points into 50 bins. Due to the small
sample size, the empirical conditional correlations fluctuate at both ends of the con-
ditional variable, and thus we restrict the plotting range to [−3σk, 3σk], where σk

(k ∈ {1, 2, 3}) is the standard deviation of the conditional variable Xk.

4.2 In the Prensence of Triadic Interactions

Based on the theory developed in Sect. 4.1, we now examine the effect of triadic

interactions on the node dynamics in the presence of positive and negative regula-

tors. We run simulations of the node dynamics (3.2.1) in the presence of positive and

negative triadic interactions using the same parameter set as the numerical results

presented in Sect. 4.1 for the three motif networks but without triadic interactions.

The incidence matrices of positive and negative regulators in the three motif net-

works are presented in Eqs. (3.3.2), (3.3.3), and (3.3.4). The values of the node

dynamics parameters are summarised in Table 4.1. We conducted 1000 independent

realisations of the node dynamics for each motif network and each sign of triadic

interaction, and computed the stationary node state distribution, covariances, and

conditional correlation coefficients.
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Table 4.1: Dynamics paramerter values in Sec. 4.3.

parameter w− w+ α T̂ γ dt Tmin Tmax

value 1.0 2.0 1.0 10−3 0.01 0.01 0.0 100.0

Figure 4.2.1 shows the marginal PDFs of node states in the presence of positive

and negative triadic interactions. We observe that the signs of the triadic interactions

do not affect the marginal PDFs of node states, as those for negative and positive

triadic interactions are almost identical. In both cases, the marginal PDFs seem

to follow Gaussian distributions, with the same mean and variance as those of the

node dynamics in the absence of triadic interactions. In any case, we cannot observe

consistent, notable differences between the marginal PDFs of node states with and

without triadic interactions.

Next, we summarised the covariances in the presence of negative and positive

regulators in Fig. 4.2.2. For all the cases, we notice a consistent trend that the

diagonal elements of the covariance matrices decrease from the theoretic values in

the absence of triadic interactions. This may indicate that the triadic interactions in

our model decrease the variances of node states, which we could not observe clearly

from the probability density functions presented in Fig. 4.2.1. Further exploration

of the effect of triadic interactions on the variances of node states is conducted for

more varied parameter sets, and the results were mixed. For some parameter sets,

the variances of node states decrease, while for others, they remain the same as those

of node dynamics in the absence of triadic interactions. The figures are not presented

here due to the space limitation. Nevertheless, further investigation is required to

understand the effect of triadic interactions on the variances of node states.

The most notable differences due to the triadic interactions are observed in the

conditional correlation coefficients ρ(Xi, Xj | Xk = x̃), as shown in Fig. 4.2.3. While

ρ(Xi, Xj | Xk = x̃) for any combination of i, j, and k is constant in the absence

of triadic interactions, we observe the dependence on the conditional variable Xk

when the triadic interaction is present. Our numerical results consistently show that

ρ(Xi, Xj | Xk = x̃) transition from one value to another at a certain threshold value
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of Xk = xthreshold when node k regulates the link connecting nodes i and j. One of

the two values indeed corresponds to the value in the absence of triadic interactions.

For ρ(Xi, Xj | Xk = x̃) in which node i (or j) regulates the link connecting nodes j

(or i) and k, we observe a seemingly linear relationship between ρ(Xi, Xj | Xk = x̃)

and Xk in motif Ga. Those in motif Gb and Gc are not linear, but waving around the

value in the absence of triadic interactions. In any case, the conditional correlation

coefficients in the presence of triadic interactions are not constant and show a non-

trivial dependence on the conditional variable Xk. This result suggests that this

dependence of the conditional correlation coefficients on the conditional variable Xk

may be a signature of triadic interactions.

We notice that the value to which ρ(X2, X3 | X1 = x̃) for motif Ga transitions

from the value in the absence of triadic interaction is approximately equal to w+/(α+

w+) (in Fig. 4.2.3, w+/(α + w+) = 2/3 indicated by a black dotted line), which is

the value of Eq. (4.1.11) in which w− is replaced by w+. Since node 1 in motif Ga

only interacts with nodes 2 and 3 via triadic interactions, i.e., there are no edges

connecting node 1 to nodes 2 and 3, the conditional correlation between X2 and X3

given X1 is only determined by triadic interactions but with the alternative strength

obtained from the switching of values in Eq. (3.2.3). Meanwhile, for motif Gb and

Gc, the values of ρ(X2, X3 | X1 = x̃) after transition are higher than the values of

Eqs. (4.1.19) and (4.1.27) with w+ in place for w−. This is likely due to the correlation

via the direct interaction of links from node 1 to nodes 2 and 3 in motif Gb and Gc

and suggests that the triadic interactions can be harder to detect in the presence of

direct interactions, i.e., links, because the effect of direct interactions will mix with

the effect of triadic interactions. Nevertheless, the effect of triadic interactions is still

observable in the conditional correlation coefficients, since the conditional correlation

coefficients in the presence of triadic interactions clearly deviate from those in the

absence of triadic interactions.

To further investigate the behaviours of conditional correlations in the presence

of triadic interactions, we tested each parameter individually. The tested parameter

sets are listed on Tab. 4.2. We primarily focus on the conditional correlation coef-

ficients ρ(X2, X3 | X1 = x̃), since it shows most notable differences from the case
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Table 4.2: Dynamics parameter values.

w− w+ α T̂ γ dt tmax

(R) 1.0 2.0 0.1 0.1 0.1 0.01 20.0
(A1) 0.1 0.2 0.1 0.1 0.1 0.01 20.0
(A2) 0.1 2.0 0.1 0.1 0.1 0.01 20.0
(A3) 1.0 20.0 0.1 0.1 0.1 0.01 20.0
(A4) 10.0 20.0 0.1 0.1 0.1 0.01 20.0
(B1) 1.0 2.0 0.01 0.1 0.1 0.01 20.0
(B2) 1.0 2.0 0.001 0.1 0.1 0.01 20.0
(C1) 1.0 2.0 0.1 -0.1 0.1 0.01 20.0
(C2) 1.0 2.0 0.1 0.01 0.1 0.01 20.0
(C3) 1.0 2.0 0.1 1.0 0.1 0.01 20.0
(D1) 1.0 2.0 0.1 0.1 0.01 0.01 20.0
(D2) 1.0 2.0 0.1 0.1 0.001 0.01 20.0

without triadic interactions. Furthermore, we only present the conditional correla-

tion coefficient ρ(X2, X3 | X1 = x̃) for motif Ga below, since the qualitative effects

of each parameter are the same for the three motifs.

Figure 4.2.4 illustrates the w− and w+ depedence of conditional correlation co-

efficient ρ(X2, X3 | X1 = x̃) conditioned on X1 = x̃. From Fig. 4.2.4, we observe

that the transition in ρ(X2, X3 | X1 = x̃) appears most clearly when w− and w+ are

well separated. Note, however, that we required w+ > w− > 0, and hence a larger

w+/w− ratio is important for the observability of the transition in our model. Given

a fixed ratio w+/w−, larger values of w+ or w− make the transition steeper.

The profiles of ρ(X2, X3 | X1 = x̃) for varying values of α are shown in Fig. 4.2.5.

While all the panels show step-like transitions in ρ(X2, X3 | X1 = x̃), the larger value

of α results in better profiles of ρ(X2, X3 | X1 = x̃), with one value approximately

equal to the theoretical value in the absence of triadic interactions. This is probably

due to the faster convergence of the simulation for a larger value of α. When α is

small, it takes longer to converge to its stationary state, and therefore it requires

longer simulation time to obtain actual stationary solutions. However, we fixed

the final time for all the parameter sets due to computational resource and time
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constraints. It should be evident from the plots of time evolution of the marginal

PDFs of the variables that the simulations for smaller α are not stationary at the

final time of the simulations.

The four panels in Fig. 4.2.6 illustate ρ(X2, X3 | X1 = x̃) for four different values

of the threshold parameter T̂ . From Fig. 4.2.6, we observe that the transitions in the

values of ρ(X2, X3 | X1 = x̃) occur at Xk = T̂ (or its proximitiy). When T̂ ≫ 0, we

cannot observe the transition in ρ(X2, X3 | X1 = x̃), because the triadic Laplacian

never fluctuates as the value switching in Jij(X) of the model no longer happens.

Indeed, ρ(X2, X3 | X1 = x̃) in right, bottom panel (C3) is roughly constant at the

theoretical value in the case with no triadic interactions. The fluctuation in the value

of ρ(X2, X3 | X1 = x̃) in (C3) is purely of stochastic nature, and should be flat when

averaged over a sufficiently large number of simulations.

Finally, Fig. 4.2.7 demonstrates the γ-dependence of ρ(X2, X3 | X1 = x̃). From

our simulation results, we can conclude that the larger γ results in a more detectable

transition in ρ(X2, X3 | X1 = x̃), since we obtain a clearer profile of ρ(X2, X3 | X1 =

x̃). This makes sense for our model, since we require sufficiently large noises in the

timeseries to detect correlations between node states, as the larger γ enables the

nodes’ timeseries to reflect correlations with other nodes stronger. In fact, in the

limit of γ → 0, we would have a completely deterministic dynamics and correlations

cannot be measured in such a case.

4.3 Discussion

We examined the effects of triadic interactions on node states’ timeseries data of

our model dynamics by computing the conditional correlation coefficients ρ(Xi, Xj |
Xk = x̃) for node tuples (i, j, k) ∈ V3 such that there exists at least one edge among

the three nodes. Simulations support our theory that ρ(Xi, Xj | Xk = x̃) is constant

if the random variables Xi, Xj, Xk interact only pairwise, that is, if there is no triadic

interaction. When triadic interactions are introduced into networks, we observe non-

trivial deviations in conditional correlation coefficients ρ(Xi, Xj | Xk = x̃) from

constants. Specifically, in the case where node k interacts triadically with link [i, j],
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the conditional correlation coefficient ρ(Xi, Xj | Xk = x̃) exhibits a transition in its

values.

Our results also suggest that the detectability of triadic interactions depends

on the structure of the underlying networks, the strength of interactions, and the

noises in the timeseries data. In particular, we found that the detectability of triadic

interactions is enhanced by increasing the strength w+ of regulators and the noise

amplitude γ. The threshold parameter T̂ also plays an important role in the detection

of triadic interactions for node dynamics, as the point at which transitions appear

in ρ(Xi, Xj | Xk = x̃) is determined by T̂ .

The results of our model implies that the triadic interactions in real, multivari-

ate timeseries data are likely detectable via the conditional correlation coefficients

defined in Eq. (4.1.4) if the timeseries are stationary and sufficiently long and the

triadic interactions are sufficiently stronger than pairwise interactions. Conditional

correlation coefficients can be computed from the timeseries data without any prior

knowledge of the underlying dynamics. Therefore, our method is applicable to a wide

range of multivariate timeseries data, including those whose underlying dynamics are

unknown. One significant limitation of our method is that we assume the underlying

network structure of the dynamics to be known and that the dynamics of the network

to depend on the triadic Laplacian. In cases where these assumptions are not valid,

we may need to develop alternative models to comment on detectability.

It is important to note that the conditional correlation coefficients are not the

only possible measures of triadic interactions. For example, we can also consider the

conditional mutual information defined as

I(Xi;Xj|Xk = x̃) =
∑
xi∈Xi

∑
xj∈Xj

pij(xi, xj | Xk = x̃) ln

[
pij(xi, xj | Xk = x̃)

pi(xi | Xk = x̃)pj(xj | Xk = x̃)

]
.

(4.3.1)

It is of interest to investigate the detectability of triadic interactions via conditional

mutual information as an extension to this work.
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Figure 4.2.1: Probability density functions of node states in the presence of negative
triadic interactions. Above, middle, and bottom rows correspond to motif (a), (b),
and (c), while left, centre, and right panels in each row correspond to the marginal
PDFs of node 1, 2, and 3, respectively. Red + and blue x markers indicate the
numerically estimated marginal PDFs and the marginal PDFs of the motifs with
positive and negative triadic interactions, respectively. Black dashed line in each
panel is the theoretic marginal PDF for the node states in the absence of triadic
interaction. The vertical axis is log-scaled.
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Figure 4.2.2: Covariances between pairs of node states in the presence of negative and
positive triadic interactions. Top and bottom rows correspond to the covariances in
the presence of negative and positive regulators, while left, centre, and right columns
correspond to the motif (a), (b), and (c). The horizontal ticks correspond to the
nine entries of the covariance matrix. White circles indicate the means of entries
of the covariance matrix over 1000 simulations. Gray boxes and gray line segments
illustrate the box plots of the distribution of entries of the covariance matrix over
1000 simulations. Violins (colour-filled curves) show the kernel density estimation
of the distribution. Red crosses are theoretic predictions in the absence of triadic
interactions.
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Figure 4.2.3: Conditional correlation coefficients of node states in the presence of
positive and negative triadic interactions. Top, middle, and bottom rows correspond
to motif (a), (b), and (c), while left, centre, and right columns correspond to condi-
tional correlations conditioned on x1, x2, and x3. In each panel, red open circles and
blue open squares indicate the numerical results for the node dynamics with positive
and negative triadic interactions, respectively. Black dashed line indicate the value
in the absence of negative triadic interactions.
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Figure 4.2.4: The w−/w+-depedence of conditional correlation coefficient ρ(X2, X3 |
X1 = x̃) in motif (a) with positive triadic interactions. Red open circles indicate
the numerical results and black dashed line indicates the theoretical values in the
absence of triadic interactions.
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Figure 4.2.5: The α-depedence of conditional correlation coefficient ρ(X2, X3 | X1 =
x̃) in motif (a) with positive triadic interactions. Red open circles indicate the
numerical results and black dashed line indicates the theoretical values in the absence
of triadic interactions.
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Figure 4.2.6: The T̂ -depedence of conditional correlation coefficient ρ(X2, X3 | X1 =
x̃) in motif (a) with positive triadic interactions. Red open circles indicate the
numerical results and black dashed line indicates the theoretical values in the absence
of triadic interactions. Vertical lines in panels (R), (C1), and (C2) show the values
of T̂ .
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Figure 4.2.7: The γ-depedence of conditional correlation coefficient ρ(X2, X3 | X1 =
x̃) in motif (a) with positive triadic interactions. Red open circles indicate the
numerical results and black dashed line indicates the theoretical values in the absence
of triadic interactions. Dotted line in the left panel shows the value of Eq. (4.1.11)
in which w− replaced by w+.



Chapter 5

Conclusion

In this study, we consider a node dynamics model that incorporates triadic interac-

tions, where nodes in the network can interact positively or negatively with links.

We examine how triadic interactions manifest themselves as conditional correlations

between node states. We analytically solved for the stationary solution of the model

when the triadic interactions are removed and showed that the stationary solution

of the node dynamics is Gaussian distributed and that the conditional correlation

coefficient is constant in the absence of the triadic interactions. These results were

also confirmed by numerical calculations implemented in Python.

Numerical calculations were then performed for the case with triadic interactions,

which could not be solved analytically, and compared with the analytical solution

for the case without triadic interactions. It was confirmed that there were no appar-

ent differences in the stationary distribution of the node states and the covariance

matrix. On the other hand, it was found that the conditional correlation coefficients

deviate non-trivially from those in the absence of triadic interactions. The effect of

triadic interactions on the conditional correlations vary depending on the signs and

strength of the triadic interaction. The results indicate the possibility of detecting

the existence and signs of triadic interactions in real multivariate timeseries data

through conditional correlation correlations.

For future prospects, verifying whether triadic interactions can be detected using

conditional correlation coefficients in larger networks with more triadic interactions
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and in real multivariate time series data is essential. Further investigation into

the potential changes in variance of the marginal node state distribution in the

presence of triadic interactions is also necessary to properly assess the effects of triadic

interactions. Finally, we need to examine whether it is possible to detect on the basis

of conditional mutual information, since we could not fully summarise the results over

the duration of this dissertation. We would like to continue our investigation into

conditional mutual information as an alternative measure for triadic interactions.



Appendix A

Derivation of Stationary Node

State Distribution

The incidence matrix of triadic interactions K in the absence of triadic interactions

is given by

Kℓi = 0, ∀ℓ ∈ E ,∀i ∈ V . (A.1)

Equation (A.1) implies that for any node state X ∈ RN in the case of no triadic

interactions,

N∑
i=1

KℓiXi = 0, ∀ℓ ∈ E . (A.2)

Without the loss of generality1, suppose T̂ > 0. Then, from Eqs. (3.2.3) and (A.2),

we have

Jij(X) =

w− if [i, j] ∈ E ,

0 otherwise.
(A.3)

1In case T̂ < 0, Jij(X) = w+ if [i, j] ∈ E and 0 otherwise.
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Using Eq. (3.2.2), this leads to the following triadic Laplacian:

L(T ) = w−L, (A.4)

where L is the Laplacian of the structural network G. When this is the case, the first

term of Eq. (3.2.1) is the product of the constant matrix w−L + αI and node state

vector X. This implies that Eq. (3.2.1) is equivalent to the SDE of the Ornstein-

Uhlenbeck process (see Eq. (2.3.16)). Namely, Eq. (3.2.1) reads

dX(t) = −AX(t)dt+BdW t (A.5)

where

A = w−L+ αI, B = diag({γ, . . . , γ︸ ︷︷ ︸
N

}). (A.6)

Hence, the stationary solution of the model in the absence of triadic interactions is

given by

pst(X) =

(
1

πγ2

)N
2 √

|w−L+ αI| exp
[
− 1

γ2
X⊤ (w−L+ αI)X

]
, (A.7)

which is a multivariate Gaussian distribution with mean 0 and covariance matrix Σ

given by Eqs. (4.1.2) and (4.1.3), respectively. The precision matrix Λ is the inverse

of the covariance matrix Σ and thus reads

Λ := Σ−1 =
2

γ2
(w−L+ αI) . (A.8)



Appendix B

Derivation of Conditional

Correlations

Here, we present the derivations of the conditional correlation coefficients for the

node dynamics in the absence of triadic interactions.

From Eq. (4.1.4), the conditional correlation coefficient of our interest can be

expressed as

ρ(Xi, Xj | Xk = x̃) =
Cov [Xi, Xj | Xk = x̃]√

Var [Xi | Xk = x̃] Var [Xj | Xk = x̃]
, x̃ ∈ R. (B.1)

Thus, to compute the conditional correlations, we require the conditional PDF

pij|k(Xi, Xj | Xk = x̃) and its covariance matrix. We shall first take the marginal

PDF pijk(Xi, Xj, Xk) from the joint PDF p(X) with X ∈ RN . From Theorem 2.2.2,

we have

pijk(Xi, Xj, Xk) = N3(Xi, Xj, Xk;µijk,Σijk), (B.2)
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with mean vector and covariance matrix

µijk =

µi

µj

µk

 = 0, Σijk =

Σii Σij Σik

Σji Σjj Σjk

Σki Σkj Σkk

 . (B.3)

Then, from Theorem 2.2.3, the conditional PDF pij|k(Xi, Xj | Xk = x̃) conditioned

on Xk = x̃ reads

pij|k(Xi, Xj | Xk = x̃) = N2

(
Xi, Xj;µij|k,Σij|k

)
, (B.4)

where

µij|k =

(
µi

µj

)
+

x̃− µk

Σ2
kk

(
Σik

Σjk

)
=

x̃

Σ2
kk

(
Σik

Σjk

)
, (B.5)

Σij|k =

(
Σii Σij

Σji Σjj

)
− 1

Σkk

(
ΣikΣki ΣikΣkj

ΣjkΣki ΣjkΣkj

)
. (B.6)

It follows from Eq. (B.1) and (B.6) that

ρ(Xi, Xj | Xk = x̃) =
Σij − Σ−1

kkΣikΣkj√
(Σii − Σ−1

kkΣikΣki)(Σjj − Σ−1
kkΣjkΣkj)

, x̃ ∈ R. (B.7)



Appendix C

Overview of Python

Implementations

We implemented Python source codes to run simulations of node dynamics on net-

works with the triadic interaction described in Chap. 3. Python scripts are available

at github.com/jym16/node dynamics with triadic interactions. The scripts utilise

the custom Python package triadic interaction equipped with the following mod-

ules:

• model.py: the Python class for the node dynamics model (NDwTIs) is defined,

• computation.py: the functions to compute probability density function, co-

variance, and conditional correlation are defined,

• visualization.py: the functions to generate plots of our interests are written.

Inside the package, the Python library sdeint [Abu17] is used to solve the multivari-

ate stochastic differential equation of our model. I also received assistance from Dr.

Anthony Baptista in implementing the create node edge incidence matrix func-

tion in computation.py and the NDwTIs class in model.py. For further information,

refer to the source codes and readme.rst in the repository.

Finally, we used Queen Mary’s Apocrita HPC facility [Apo] to run the simula-

tions.
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